首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three‐dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze‐fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block‐face, SBF‐SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.  相似文献   

2.
The use of large unfixed frozen tissue samples (10 × 10 × 5 mm3) for combined light microscopy (LM) and electron microscopy (EM) is described. First, cryostat sections are applied for various LM histochemical approaches including in situ hybridization, immunohistochemistry and metabolic mapping (enzyme histochemistry). When EM inspection is needed, the tissue blocks that were used for cryostat sectioning and are stored at −80 °C, are then fixed at 4 °C with glutaraldehyde/paraformaldehyde and prepared for EM according to standard procedures. Ultrastructurally, most morphological aspects of normal and pathological tissue are retained whereas cryostat sectioning at −25 °C does not have serious damaging effects on the ultrastructure. This approach allows simple and rapid combined LM and EM of relatively large tissue specimens with acceptable ultrastructure. Its use is demonstrated with the elucidation of transdifferentiated mouse stromal elements in human pancreatic adenocarcinoma explants grown subcutaneously in nude mice. Combined LM and EM analysis revealed that these elements resemble cartilage showing enchondral mineralization and aberrant muscle fibres with characteristics of skeletal muscle cells.  相似文献   

3.
Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.  相似文献   

4.
Correlative light and electron microscopy (CLEM) is a multimodal technique of increasing utilization in functional, biochemical, and molecular biology. CLEM attempts to combine multidimensional information from the complementary fluorescence light microscopy (FLM) and electron microscopy (EM) techniques to bridge the various resolution gaps. Within this approach the very same cell/structure/event observed at level can be analyzed as well by FLM and EM. Unfortunately, these studies turned out to be extremely time consuming and are not suitable for statistical relevant data. Here, we describe a new CLEM method based on a robust specimen preparation protocol, optimized for cryosections (Tokuyasu method) and on an innovative image processing toolbox for a novel type of multimodal analysis. Main advantages obtained using the proposed CLEM method are: (1) hundred times more cells/structures/events that can be correlated in each single microscopy session; (2) three‐dimensional correlation between FLM and EM, obtained by means of ribbons of serial cryosections and electron tomography microscopy (ETM); (3) high rate of success for each CLEM experiment, obtained implementing protection of samples from physical damage and from loss of fluorescence; (4) compatibility with the classical immunogold and immunofluorescence labeling techniques. This method has been successfully validated for the correlative analysis of Russel Bodies subcellular compartments. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Electron microscopy offers a unique potentiality to visualize individual molecules. For the last 30 years it has been used to study the structure and the interactions of various biological macromolecules. The contribution of electron microscopy is important because of its capacity to demonstrate the existence of conformational structures such as kinks, bents, loops, etc., either on naked DNA, or on DNA associated with various proteins or ligands. Increasing interest was given to such observations when it was found that they provide a direct visualization of interacting molecules involved in DNA metabolism and gene regulation. Technical advances in the preparation of the specimens, their observation in the electron microscope, and the image processing by computers have allowed the shifting from qualitative to quantitative analysis, as illustrated by a few examples from our laboratory.  相似文献   

6.
Fluorescence light microscopy (LM) has many advantages for the study of cell organization. Specimen preparation is easy and relatively inexpensive, and the use of appropriate tags gives scientists the ability to visualize specific proteins of interest. LM is, however, limited in resolution, so when one is interested in ultrastructure, one must turn to electron microscopy (EM), even though this method presents problems of its own. The biggest difficulty with cellular EM is its limited utility in localizing macromolecules of interest while retaining good structural preservation. We have built a cryo-light microscope stage that allows us to generate LM images of vitreous samples prepared for cryo-EM. Correlative LM and EM allows one to find areas of particular interest by using fluorescent proteins or vital dyes as markers within vitrified samples. Once located, the sample can be placed in the EM for further study at higher resolution. An additional benefit of the cryo-LM stage is that photobleaching is slower at cryogenic temperatures (−140°C) than at room temperature.  相似文献   

7.
Electron microscopy (EM) is traditionally employed as a follow‐up to fluorescence microscopy (FM) to resolve the cellular ultrastructures wherein fluorescently labelled biomolecules reside. In order to translate the information derived from FM studies to EM analysis, biomolecules of interest must be identified in a manner compatible with EM. Although fluorescent signals can serve this purpose when FM is combined with EM in correlative light and electron microscopy (CLEM), the traditional immunogold labelling remains commonly used in this context. In order to investigate how much these two strategies relate, we have directly compared the subcellular localization of on‐section fluorescence labelling with on‐section immunogold labelling. In addition to antibody labelling of LAMP‐1, bioorthogonal click labelling was used to localize soluble cysteine cathepsins or membrane‐associated sialylated glycans. We reveal and characterize the existence of inherent discrepancies between the fluorescence signal and the distribution of gold particles in particular in the case of membrane‐associated antigens.  相似文献   

8.
In Life Science research, electron microscopy (EM) is an essential tool for morphological analysis at the subcellular level as it allows for visualization at nanometer resolution. However, electron micrographs contain image degradations such as noise and blur caused by electromagnetic interference, electron counting errors, magnetic lens imperfections, electron diffraction, etc. These imperfections in raw image quality are inevitable and hamper subsequent image analysis and visualization. In an effort to mitigate these artefacts, many electron microscopy image restoration algorithms have been proposed in the last years. Most of these methods rely on generic assumptions on the image or degradations and are therefore outperformed by advanced methods that are based on more accurate models. Ideally, a method will accurately model the specific degradations that fit the physical acquisition settings. In this overview paper, we discuss different electron microscopy image degradation solutions and demonstrate that dedicated artefact regularisation results in higher quality restoration and is applicable through recently developed probabilistic methods.  相似文献   

9.
Scanning force microscopy (SFM) holds great promise for biological research. Two major problems that have confronted imaging with the scanning force microscope have been the distortion of the image and overestimation in measurements of lateral size due to the varying geometry and characteristics of the scanning tip. In this study, spherical colloidal gold particles (10, 20 and 40 nm in diameter) were used to determine (1) tip parameters (size, shape and semivertical angle); (2) the distortion of the image caused by the tip; and (3) the overestimation or broadening of lateral dimensions. These gold particles deviate little in size, are rigid and have a size similar to biological macromolecules. Images of the colloidal gold particles by SFM were compared with those obtained by electron microscopy (EM). The height of the gold particles as measured by SFM and EM was comparable and was little affected by the tip geometry. The measurements of the lateral dimensions of colloidal gold, however, showed substantial differences between SFM and EM in that SFM resulted in an overestimate of the lateral dimensions. Moreover, the distortion of images and broadening of lateral dimensions were specific to the SFM tip used. The calibration of the SFM tip with mica provided little clue as to the type of distortion and the amount of lateral broadening observed when the larger gold particles were scanned. The SFM image also depended on the orientation of the tip with respect to the specimen. Our results suggest that quantitative SFM imaging requires calibration to identify and account for both the distortions and the magnitude of lateral broadening caused by the cantilever tip. Calibration with gold particles is fast and nondestructive to the tip. The raw imaging data of the specimen can be corrected for the tip effect and true structural information can be derived. In summary, we present a simple and practical method for the calibration of the SFM tip using gold particles with a size in the range of biomacromolecules that allows: (1) selection of a cantilever tip that produces an image with minimal distortion; (2) quantitative determination of tip parameters; (3) reconstruction of the shape of the tip at different heights from the tip apex; (4) appreciation of the type of distortion that may be introduced by a specific tip and quantification of the overestimation of the lateral dimensions; and (5) calculation of the true structure of the specimen from the image data. The significance is that such calibration will permit quantitative and accurate imaging with SFM.  相似文献   

10.
Recent progress in freeze-fracturing of high-pressure frozen samples   总被引:1,自引:1,他引:1  
Pancreatic tissue, bacteria and lipid vesicles were high‐pressure frozen and freeze‐fractured. In addition to the normal holder, a new type of high‐pressure freezing holder was used that is particularly suitable for suspensions. This holder can take up an EM grid that has been dipped in the suspension and clamped in between two low‐mass copper platelets, as used for propane‐jet freezing. Both the standard and the new suspension holder allowed us to make cryo‐fractures without visible ice crystal damage. High‐pressure frozen rat pancreas tissue samples were cryo‐fractured and cryo‐sectioned with a new type diamond knife in the microtome of a freeze‐etching device. The bulk fracture faces and blockfaces were investigated in the frozen‐hydrated state by use of a cryo‐stage in an in‐lens SEM. Additional structures can be made visible by controlled sublimation of ice (‘etching’), leading to a better understanding of the three‐dimensional organization of organelles, such as the endoplasmic reticulum. With this approach, relevant biological structures can be investigated with a few nanometre resolution in a near life‐like state, preventing the artefacts associated with conventional fixation techniques.  相似文献   

11.
The method to observe the exact morphology of swelled seaweed as an example of biological material by field emission scanning electron microscopy (FE‐SEM) with the aid of hydrophilic ionic liquid (IL); 1‐butyl‐3‐methylimidazolium tetrafluoroborate is reported. Seaweed was first swelled in 3.5% NaCl solution and then treated with the IL and water mixture in 1:7 weight ratios and centrifuged to remove the excess IL solution. Thus treated seaweed maintained its morphology even at high magnification and did not show drying in the FE‐SEM chamber. This observation technique might be useful for various kinds of biological materials to be observed under FE‐SEM. Microsc. Res. Tech., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Cryo-electron tomography allows three-dimensional visualization of frozen-hydrated, vitrified biological material at molecular resolution. Here, we summarize the most important sample preparation methods and technical aspects relevant for cryo-electron tomography, as well as its recent biological applications from isolated macromolecular complexes to entire cells and tissues.  相似文献   

13.
The histomicroscopy and normal anatomy of the major body organ systems were investigated in the adult killifish, Aphanius hormuzensis using histological examination, X‐ray imaging, double staining, light microscopy and scanning electron microscopy (SEM). Based on the histomicroscopic observations, the kidney, liver and swim bladder in the studied species were comparable to other fish models. The anterior portion of the kidney is bulbous, while the posterior portion is narrow and elongated; the liver has a single lobe and the swim bladder is a single‐chambered organ with no connection to the digestive tract (physoclistous). X‐ray imaging and double staining examination showed 12 abdominal and 15 caudal vertebrae and a single hypural plate in the caudal skeleton. According to light microscopy, the scales were rounded to pentagonal in shape with three types of radii (primary, secondary and tertiary), and the urohyal bone was elongated. SEM microscopy showed a single row of tricuspid teeth on the upper and lower jaw, respectively, each tooth has two lateral cusps that are shorter than the middle one. The number of teeth was 17–18 in the upper jaw and 19–20 in the lower jaw. The saccular otoliths were rounded‐trapezoid in shape with a moderately incised and V‐shaped excisura. The members of killifishes are an important group for biologists because of their evolutionary properties, regeneration capacity and usefulness as biological control and also for the ecotoxicological assessment of environmental pollution. The outcomes of this study may provide a useful basis for future research on the genus Aphanius.  相似文献   

14.
15.
The main objective of the present study was to perform an unbiased comparison of immersion vs. perfusion techniques to assess whether we could use the former to quantify synapses through electron microscopy (EM). Using the immersion technique is ideally suited for instances in which the specimen under study could not be perfused under the standard EM protocol. Our results suggest that, despite suboptimal qualitative results, fixation by immersion allows for adequate quantification of synapses.  相似文献   

16.
Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the characteristics of cell wall textures, i.e. the architectures of the CMFs in the wall, of root hairs of Arabidopsis thaliana, Medicago truncatula and Vicia sativa and compare the different techniques we used to study them. Root hairs of these species have a random primary cell wall deposited at the root hair tip, which covers the outside of the growing and fully grown hair. The secondary wall starts between 10 (Arabidopsis) and 40 (Vicia) μm from the hair tip and the CMFs make a small angle, Z as well as S direction, with the long axis of the root hair. CMFs are 3-4 nm wide in thin sections, indicating that single cellulose synthase complexes make them. Thin sections after extraction of cell wall matrix, leaving only the CMFs, reveal the type of wall texture and the orientation and width of CMFs, but CMF density within a lamella cannot be quantified, and CMF length is always underestimated by this technique. Field emission scanning electron microscopy and surface preparations for transmission electron microscopy reveal the type of wall texture and the orientation of individual CMFs. Only when the orientation of CMFs in subsequent deposited lamellae is different, their density per lamella can be determined. It is impossible to measure CMF length with any of the EM techniques.  相似文献   

17.
The term “etching,” in electron microscopy, refers to the removal of specimen surface layers and includes chemical, electrolytic, and ion-beam methods. The ion-beam etching process is used to remove layers of a target material by bombarding it with ionized gas molecules. Recently, the method has been applied to the field of biological specimens; however, the practical procedures for such organic materials have not been developed. In the present study, we used an apparatus in which a beam of argon ions is collimated and focused by electrostatic lenses onto an appropriate target. We demonstrated the optimum conditions to observe biological specimens that were treated with osmium tetroxide and tannic acid. The specimens were examined uncoated at low accelerating voltage using a field emission scanning electron microscope. According to our experiments, when a biological specimen was observed under high-resolution conditions at over 50,000x magnification, the optimum condition of ion-beam etching consisted of an accelerating voltage of E = 1 keV and an ion-beam dose of It = 360 ~ 400 μA. min, depending on parts of the specimens. In order to decrease overetching, we had to choose factors such as E = 1 ~ 2 keV and It = 500 μA. min.  相似文献   

18.
Several protozoa have emerged as the major opportunistic infections and cause of death in patients with acquired immunodeficiency syndrome (AIDS). Pneumocystis carinii pneumonia is the leading cause of death in AIDS patients. Electron microscopy (EM) usually shows numerous trophozoites and cysts of Pneumocystis filling up the entire alveolar space, while only cysts are seen under the light microscope. The focal thickening of cyst wall of Pneumocystis, as demonstrated by EM and manifested as a “parentheses” shaped structure with silver stain, serves as a diagnostic marker for Pneumocystis. Freeze-fracture EM has demonstrated the intimate contact between Pneumocystis trophozoites and the type I pneumocytes, which may contribute to the alveolar-capillary block, leading to severe respiratory distress. However, EM is seldom needed for the diagnosis of this infection. Toxoplasma encephalitis, which is an unusual clinical manifestation in cases of toxoplasmosis reported previously, has become a common complication and one of the major causes of death in patients with AIDS. Because subclinical infection by Toxoplasma is common, serologic tests usually offer no definite answers as to whether the infection is acute or chronic, active or past. The small size and its non-specificity in both morphology and tissue affinity make light microscopic diagnosis of toxoplasmosis difficult. Only immunologic staining, such as immunoperoxidase and immunofluorescence, can help to achieve a definite positive identification of the organism. When special antibodies or facility for such staining is not available, EM is the final resort for identifying Toxoplasma by showing the apical complex with the characteristic sausageshaped rhoptries. Cryptosporidiosis, practically unknown before the AIDS outbreak, has become one of the most common intestinal protozoa in both immunocompromised and immunocompetent patients. The protracted and sometimes fatal course of cryptosporidiosis in immunocompromised patients can be explained by the presence of autoinfective oocysts (thin-walled oocysts), as detected by EM, and by recycling of first-generation schizonts observed experimentally. While diagnosis of cryptosporidiosis can be made by detection of oocysts in stools in most cases, EM is still the last resort for a definitive identification of Cryptosporidium species. While the incidence of isosporiasis is still low, it has been found more frequently in patients with AIDS than in the general population. The parasite, Isospora belli, being a coccidian as is the Cryptosporidium species, is similar to the latter in its life cycle and clinical manifestations. However, the morphology of its diagnostic stage, the oocyst, is quite different from Cryptosporidium and it is much larger than the latter. The oocyst of Isospora belli, usually containing one sporoblast, can be detected by light microscopy in stools. Microsporidiosis, having been known only recently, is also relatively common in immunocompromised patients, including four patients with AIDS. Although this protozoan can be detected by light microscopy and its polar granules, identified by the periodic acid-Schiff or methenamine silver stain, are characteristic, a definitive diagnosis of microsporidiosis still depends on EM.  相似文献   

19.
For more than 20 years, high-pressure freezing has been used to cryofix bulk biological specimens and reports are available in which the potential and limits of this method have been evaluated mostly based on morphological criteria. By evaluating the presence or absence of segregation patterns, it was postulated that biological samples of up to 600 μm in thickness could be vitrified by high-pressure freezing. The cooling rates necessary to achieve this result under high-pressure conditions were estimated to be of the order of several hundred degrees kelvin per second. Recent results suggest that the thickness of biological samples which can be vitrified may be much less than previously believed. It was the aim of this study to explore the potential and limits of high-pressure freezing using theoretical and experimental methods. A new high-pressure freezing apparatus (Lei?a EM HPF), which can generate higher cooling rates at the sample surface than previously possible, was used. Using bovine articular cartilage as a model tissue system, we were able to vitrify 150-μm-thick tissue samples. Vitrification was proven by subjecting frozen-hydrated cryosections to electron diffraction analysis and was found to be dependent on the proteoglycan concentration and water content of the cartilage. Only the lower radical zone (with a high proteoglycan concentration and a low water content compared to the other zones) could be fully vitrified. Our theoretical calculations indicated that applied surface cooling rates in excess of 5000 K/s can be propagated into specimen centres only if samples are relatively thin (<200 μm). These calculations, taken together with our zone-dependent attainment of vitrification in 150-μm-thick cartilage samples, suggest that the critical cooling rates necessary to achieve vitrification of biological samples under high-pressure freezing conditions are significantly higher (1000–100 000 K/s) than previously proposed, but are reduced by about a factor of 100 when compared to cooling rates necessary to vitrify biological samples at ambient pressure.  相似文献   

20.
A correlative morphologic analysis was carried out on isolated metaphase chromosomes by means of field emission in-lens scanning electron microscopy (FEISEM) and atomic force microscopy (AFM). Whereas FEISEM provides ultra-high resolution power and allows the surface analysis of biological structures free of any conductive coating, the AFM allows imaging of biological specimens in ambient as well as in physiologic conditions. The analysis of the same samples was made possible by the use of electrical conductive and light transparent ITO glass as specimen holder. Further preparation of the specimen specific for the instrumentation was not required. Both techniques show a high correlation of the respective morphologic information, improving their reciprocal biological significance. In particular, the biological coat represents a barrier for surface morphologic analysis of chromosome spreads and it is sensitive to protease treatment. The chemical removal of this layer permits high-resolution imaging of the chromatid fibers but at the same time alters the chromosomal dimension after rehydration. The high-resolution level, necessary to obtain a precise physical mapping of the genome that the new instruments such as FEISEM and AFM could offer, requires homogeneously cleaned samples with a high grade of reproducibility. A correlative microscopical approach that utilizes completely different physical probes provides complementary useful information for the understanding of the biological, chemical, and physical characteristics of the samples and can be applied to optimize the chromosome preparations for further improvement of the knowledge about spatial genome organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号