首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于文化粒子群算法的约束优化问题求解   总被引:4,自引:0,他引:4  
提出一种基于文化算法的粒子群优化算法(PSO)。该算法在群体空间采用基于高斯概率分布和柯西概率分布的改进PSO算法,在信念空间根据形势知识和规范化知识指导种群的进化,充分利用优秀个体所包含的信息,提高了算法的进化速度。实验表明,该算法的优化性能和效率优于基本PSO算法。  相似文献   

2.
提出了一种改进的粒子群算法(Improved Particle Swarm Optimization,IPSO),使用了一种新型的变异策略,并在搜索过程中将部分邻近的个体聚集成核,从而形成多子群引导粒子探测新的搜索区域,采用了简单易行的罚函数约束处理机制,使算法在求解较难的非线性约束优化问题时具有很强的全局搜索能力与效率。对比数值实验结果表明,该算法能够有效、稳定地求解非线性约束优化问题。  相似文献   

3.
粒子群算法是一种进化计算技术,并成功的运用于广泛的数值优化问题。PSO算法在求解高维复杂函数优化问题时容易陷入局部最优。有鉴于此,本文提出了一种基于信息熵的粒子优化算法。该算法提高设计了一种兼顾种群选择性压力以及种群多样性的选择策略,从而提高了粒子在运行过程中的多样性。实验表明,该算法有效避免了陷入局部最优,提高了全局最优解的搜索精度。  相似文献   

4.
李妮  欧阳艾嘉  李肯立 《计算机应用》2012,32(12):3319-3321
针对种群初始化时粒子过于集中和基本粒子群算法搜索精度不高的缺陷,提出了一种求解约束优化问题的改进粒子群算法。该算法引入佳点集技术来优化种群的初始粒子,使种群粒子初始化时分布均匀,因而种群具有多样性,不会陷入局部极值;同时使用协同进化技术使双种群之间保持通信,从而提高算法的搜索精度。仿真实验结果表明:将该算法用于5个基准测试函数,该算法均获得了理论最优解,其中有4个函数的测试方差为0。该算法提高了计算精度且鲁棒性强,可以广泛应用于其他约束优化问题中。  相似文献   

5.
随机摄动粒子群优化算法   总被引:1,自引:0,他引:1  
余炳辉  袁晓辉  王金文  权先璋 《计算机工程》2006,32(12):189-190,276
基于粒子群优化算法种群结构相对独立的特点,提出了一种改进的粒子群优化算法一随机摄动粒子群优化算法。该算法通过对每一次进化计算后记忆中的最优粒子进行随机摄动操作来提高解的精度和算法的搜索效率,同时通过对种群中的最差粒子重新进行初始化来保持种群的多样性以避免陷入局部最优解。通过典型复杂函数测试表明,随机摄动粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法。  相似文献   

6.
带邻近粒子信息的粒子群算法   总被引:2,自引:1,他引:1       下载免费PDF全文
针对标准粒子群算法易出现早熟的问题,提出了一种带邻近粒子信息的粒子群算法。该算法中粒子位置的更新不仅包括自身最优和种群最优,还包括粒子目前位置最近粒子最优的信息。为了有效地平衡算法的全局探索和局部开发,并使其收敛于全局最优值,采用了时变加速因子策略,两个加速因子随进化代数线性变化。通过对5个经典测试函数优化的数值仿真实验并与其他粒子群算法的比较,结果表明了在平均最优值和成功率上都有所提高,特别是对多峰函数效果更加明显。  相似文献   

7.
提出一种混合粒子群优化算法用于求解约束优化问题。新算法的主要特点是:在搜索机制方面,利用混沌初始化种群以提高初始群体的质量。为了扩大粒子的搜索范围,引入柯西变异算子。利用单形交叉算子对种群进行局部搜索。在约束处理技术方面,根据当前种群中可行解比例自适应地选择不同的个体比较准则。数值实验结果表明了该算法的有效性。  相似文献   

8.
将处理约束问题的乘子法与改进的粒子群算法相结合,提出了一种求解非线性约束问题的混合粒子群算法。此算法兼顾了粒子群优化算法和乘子法的优点,对迭代过程中出现的不可行粒子,利用乘子法处理后产生可行粒子,然后用改进的粒子群算法来搜索其最优解,这样不仅减小了粒子群算法在寻优过程中陷入局部极小的概率,而且提高了搜索精度。数值试验结果表明提出的新算法具有搜索精度更高、稳定性更强、鲁棒性更好等特点。  相似文献   

9.
一种基于粒子群算法求解约束优化问题的混合算法   总被引:26,自引:0,他引:26       下载免费PDF全文
通过将粒子群算法(PSO)与差别进化算法(DE)相结合,提出一种混合算法PSODE,用于求解约束优化问题.PSODE是在PSO算法中适当引入不可行解,将粒子群拉向约束边界,加强对约束边界的搜索,同时与DE算法结合以加强搜索能力.基于典型高维复杂函数的仿真表明,该算法简单高效,鲁棒性强.  相似文献   

10.
基于改进粒子群优化算法的约束多目标优化   总被引:2,自引:2,他引:2       下载免费PDF全文
针对约束多目标优化问题,提出一种改进的粒子群优化算法,采用距离量度和自适应惩罚函数相结合的约束处理技术,通过可行解比例有效均衡目标函数和约束条件,提高算法的边界搜索能力。定义新的k最近邻聚集密度,保持解集分布性,并将聚集密度和轮盘赌选择相结合选取全局最优粒子。仿真结果表明,该算法在Pareto解集均匀性及逼近性方面均具有优势。  相似文献   

11.
求解多目标优化问题的自适应粒子群算法   总被引:2,自引:0,他引:2       下载免费PDF全文
提出了一种基于自适应惯性权重的多目标粒子群优化算法AWMOPSO,采用新的适应值分配机制,在搜索过程中根据粒子的适应值对粒子进行分类,动态调整粒子的惯性权重以控制粒子的开发和探索能力。用外部精英集保存非支配解,并通过拥挤距离维持解的多样性。引入精英迁移和局部扰动策略,提高收敛的速度和精度。典型的测试函数的计算结果表明了算法能够快速逼近Pareto最优前沿,是求解多目标优化问题的有效方法。  相似文献   

12.
带自适应感知能力的粒子群优化算法   总被引:1,自引:0,他引:1  
提出一种求解约束优化问题的改进粒子群优化算法。它利用可行性判断规则处理约束条件,更新个体最优解和全局最优解。通过为粒子赋予自适应感知能力,算法能较好地平衡全局和局部搜索,且有能力跳出局部极值,防止早熟。边界附近粒子的感知结果被用来修正其飞行速度以加强算法对约束边界的搜索。实验结果表明,新算法收敛速度快,寻优能力强,能很好地求解约束优化问题。  相似文献   

13.
针对标准粒子群算法求解复杂优化问题时容易出现过早收敛的问题,提出了混合三群协同粒子群算法(HTSPSO),将粒子群分为3个协同优化的子群,保持迭代后期粒子群的多样性。在4个经典测试函数上的仿真实验表明,新算法较传统PSO算法收敛更快,精度更高。将粒子群算法应用于求解一类min-max-min问题,并给出了数值算例。  相似文献   

14.
新型多群体协同进化粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
在基本的MCPSO算法中除了主群与从群的信息交流,从群之间没有信息交流。为了解决这一问题,提出了一种具有中心交流机制的改进MCPSO算法,该策略可以实现各个从群之间的信息交流,从而加快算法收敛。仿真实验结果表明改进后的算法具有较好的求解精度和较快的收敛速度。  相似文献   

15.
提出了一种改进型信赖域微粒群算法来求解带有不等式约束优化问题。粒子群每一次进化后,对所有粒子执行信赖域搜索,寻找更优个体,从而增加了微粒群算法的局部搜索能力。把算法应用于供应商补货优化,实验结果表明,该方案能够有效地减少供应商的补货成本,具有较好的应用价值。  相似文献   

16.
提出一种基于距离行为模型的改进微粒群算法,根据微粒所处区域来调整其飞行的速度。在吸引区域微粒加速飞向群体最优位置,在排斥区域按正常速度飞行。为了研究算法的性能,对几种典型高维非线性函数进行了测试。研究结果表明,与基本微粒群算法相比,改进后的微粒群算法提高了算法的收敛速度和收敛精度,改善了算法的性能。  相似文献   

17.
带自适应变异的量子粒子群优化算法   总被引:6,自引:0,他引:6       下载免费PDF全文
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。  相似文献   

18.
用并行化的QPSO解决有约束的优化问题   总被引:1,自引:0,他引:1  
马艳  须文波  孙俊  刘阳 《计算机应用》2006,26(9):2047-2050
采用粒子群系统的并行化的量子化模型提高全局搜寻能力,在解决约束问题时采用不固定的多阶段任务补偿函数以提高收敛性,并获得更准确的结果,提出了并行化的QPSO(PQPSO)算法。此算法在几个可信赖的基准函数中被测试,并且实验结果显示PQPSO的最优值和运行时间比QPSO和传统的PSO有很大的提高,而且运行所用的时间资源接近线性减少。  相似文献   

19.
芦进  肖人彬  李婷婷 《计算机应用》2007,27(12):2888-2892
提出了一种新的算法结构,通过建立"局部环境因数"模型,利用集中式处理模式,动态分配全局勘探和局部开采子种群比例,有效地实现分工目的,平衡算法的局部和全局搜索能力。将其应用到两个不同类型的实际工程约束优化问题中进行验证,并与其他文献的改进算法进行了对比。实验结果表明,该算法比其他改进算法在计算精度、效率、鲁棒性上都有很大的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号