共查询到19条相似文献,搜索用时 46 毫秒
1.
可移动机器人在中心对称环境中的自定位算法 总被引:1,自引:0,他引:1
可移动机器人的自定位问题是智能机器人研究中的重要课题,它包含许多传感器技术和定位算法,马尔可夫定位算法的优点是可以使机器人在全局不确定的情况下估计它的位置。这种方法采用概率分布描述机器人的位置信度,机器人通过在运动过程中所获得的传感器数据和运动记录来更新信度分布,然后采用最高信度值来估计它所在的位置。对于只有距离测量传感器的机器人在中心对称环境中仅仅采用马尔可夫自定位法还是无法确定其位置,为了解决中心对称的环境中所存在的问题,建议在机器人上装上陀螺仪或指南针,定义一个角度高斯分布函数,并利用这个函数建立新的机器人感知模型来扩展马尔可夫定位算法,通过仿真程序对多种对称情况进行实验,验证了这一新算法的可行性,这个扩展马尔可夫自定位算法不仅可使机器人在中心对称环境中很快地确定自己的位置,而且可以加快非对称环境中信度分布收敛到真实位置的速度。 相似文献
2.
提出一种基于粒子滤波器的机器人定位算法. 首先利用一并行扩展卡尔曼滤波器作为粒子预测分布, 将当前观测的部分信息融入, 以改善滤波效果, 减小所需粒子数; 然后提出变密度函数边界的马尔可夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)重采样方法, 以提高粒子的细化能力; 最后结合普通重采样方法, 提出一种改进的MCMC重采样的机器人定位算法, 减少粒子匮乏效应的同时, 提高了定位精度. 实验结果表明, 该算法较传统方法在计算复杂度、定位精度和鲁棒性方面都有显著提高. 相似文献
3.
4.
5.
《计算机应用与软件》2013,(6)
针对RoboCup标准组比赛平台仿人机器人NAO定位的特殊问题,在研究通用Monte Carlo定位算法基础上,构建NAO的运动模型和感知模型。通过增加一组随机粒子,改进通用Monte Carlo定位算法,增强MCL算法对于定位失败及仿人机器人NAO被"绑架"问题的适应性。最后通过仿人机器人NAO的静态定位、动态定位以及被"绑架"后的定位实验,验证了算法的有效性和鲁棒性。 相似文献
6.
为了使多机器人系统能够模仿蚁群寻找食物源的行为方式来搜索室内环境中存在的气味源,通过对蚁群算法的修正,形成一种新的多机器人协作策略.修正的蚁群算法包括局部遍历搜索、全局随机/概率搜索和信息素更新三个阶段.为了实现多个气味源的定位,在迭代搜索中加入了气味源确认机制.仿真结果表明,局部遍历搜索能够保证机器人逐步靠近气味源,而在全局搜索中设置气味浓度检测阈值可以避免机器人“群聚”现象的形成.最后验证了从不同入口点分散进入搜索区域时,机器人对多个气味源的搜索定位效果. 相似文献
7.
针对室内陪护机器人粒子滤波定位方法,研究了四种粒子滤波重采样算法:多项式重采样算法、残差重采样算法、分层重采样算法和系统重采样算法,并分别对其进行仿真比较。实验证明残差重采样算法粒子收敛速度和粒子匮乏程度取折衷,性能优于其它三种重采样算法,在此基础上利用仿真实验结果在HHR-0303服务机器人上进行了实验。实验证明采用残差重采样算法的粒子滤波算法,利用声纳配合里程计定位的方案能达到定位目的。 相似文献
8.
9.
陪护机器人粒子滤波定位法中重采样算法研究 总被引:1,自引:0,他引:1
针对室内陪护机器人粒子滤波定位方法,研究了四种粒子滤波重采样算法:多项式重采样算法、残差重采样算法、分层重采样算法和系统重采样算法,并分别对其进行仿真比较.实验证明残差重采样算法粒子收敛速度和粒子匮乏程度取折衷,性能优于其它三种重采样算法,在此基础上利用仿真实验结果在HHR-0303服务机器人上进行了实验.实验证明采用残差重采样算法的粒子滤波算法,利用声纳配合里程计定位的方案能达到定位目的. 相似文献
10.
机器人定位即需根据传感器测量对自身位置进行估计. 由于机器人系统模型的复杂非线性, 工况环境中的不确定干扰, 定位结果不可避免地会受到系统内外扰动的影响. 现有的定位算法往往仅能依赖模型或传感配置以及算法自身的鲁棒性被动抗扰, 这使得定位系统的抗扰能力有限、应用场景受限. 本文基于自抗扰控制思想提出一种 能够主动补偿系统内外扰动的机器人定位策略. 该策略将系统中所有能够影响最终定位结果的不确定因素统一视为总扰动, 并设计扩张状态观测器实现对总扰动的观测, 在此基础上构建控制器补偿总扰动影响, 以使定位结果更加准确. 与传统的定位抗扰策略相比, 本文所提出的抗扰定位策略并不依赖于模型或特定的传感配置, 能够处理任意有界的扰动类型, 理论上能够成为定位抗干扰的终极解决路径. 最后, 基于李雅普诺夫理论证明了系统的稳定性. 仿真和实车实验验证了本文提出的基于自抗扰控制的机器人定位策略能够有效地观测系统总扰动, 并补偿扰动影响, 提高定位结果的准确度. 相似文献
11.
移动机器人定位问题就是通过传感器数据来确定自己的位姿。本文介绍了几种基于概率的自定位算法。针对蒙特卡罗定位算法需要精确概率模型以及计算量大的问题,本文提出了一种均匀蒙特卡罗算法。该算法假设运动模型和感知模型都是均匀分布的,采样点在运动过程中不变,而且不需要精确的概率模型,计算量小,稳定性高。试验表朗,该算法能在室内环境下很好的对机器人定位。 相似文献
12.
There is huge diversity among navigation and path-planning problems in the real world because of the enormous number and great
variety of assumptions about the environments, constraints, and tasks imposed on a robot. To deal with this diversity, we
propose a new solution to the path-planning and navigation of a mobile robot. In our approach, we formulated the following
two problems at each time-step as discrete optimization problems: (1) estimation of a robot's location, and (2) action decision.
For the first problem, we minimize an objective function that includes a data term, a constraint term, and a prediction term.
This approach is an approximation of Markov localization. For the second problem, we define and minimize another objective
function that includes a goal term, a smoothness term, and a collision term. Simulation results show the effectiveness of
our approach.
This work was presented in part at the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, January
26–28, 2000 相似文献
13.
This paper presents the real-time autonomous navigation of an electric wheelchair in a large-scale urban area. Accurate self-pose localization and well-chosen motion control are crucial for application to urban areas, as electric wheelchairs move on paved roads in dynamic environments and travel along sidewalks at a brisk speed. Our system is equipped with a localization module based on a 3D map and a path planning module based on a navigation map. However, the large-scale 3D map causes a high memory load, and the embedded PC can not deal with the map data. In addition, the large-scale navigation map increases the computational cost of path planning, which causes delays in navigation. To achieve real-time navigation independent of map size, we propose a 6-DoF pose localization switching reference 3D map and a two-step path planning framework. We ran tests by using an electric wheelchair on a real street in Tokyo and found that the proposed navigation system achieved autonomous navigation for over 8.8?km in about 133 minutes. The experimental results showed that the memory load was kept constant and the path planning was performed at high frequency, regardless of the size of the map or the distance to the destination. 相似文献
14.
As service robots and other ubiquitous technology have evolved, an increasing need for the autonomous navigation of mobile
objects has arisen. In a large number of localization schemes, the absolute-position estimation method, which relies on navigation
beacons or landmarks, has been widely used as it has the advantages of being economical and accurate. However, only a few
of these schemes have expanded their application to complicated workspaces, or those that have many rooms or blocks. As the
navigation of mobile objects in complicated workspaces is vital for ubiquitous technology, multiblock navigation is necessary.
This article presents methodologies and techniques for the multiblock navigation of the indoor localization system with active
beacon sensors. This new indoor localization system design includes ultrasonic attenuation compensation, dilution-of-precision
analysis, and a fault detection and isolation algorithm using redundant measurements.
This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January
31–February 2, 2008 相似文献
15.
基于多传感器信息融合的斜面移动机器人定位新方法 总被引:5,自引:1,他引:5
首先分析了本文的研究意义;然后针对在斜面上工作的轮式移动机器人,提出了通过卡尔曼滤波融合倾斜角传感器和码盘传感器信息的移动机器人定位新方法;最后进行了斜面定位试验.试验结果证实了本文定位方法的有效性. 相似文献
16.
17.
This paper presents a probabilistic approach for sensor-based localization with weak sensor data. Wireless received signal strength measurements are used to disambiguate sonar measurements in symmetric environments. Particle filters are used to model the multi-hypothesis estimation problem. Experiments indicate that multiple weak cues can provide robust position estimates and that multiple sensors also aid in solving the kidnapped robot problem. 相似文献
18.
In this paper, we propose a new localization algorithm based on a hybrid trilateration algorithm for obtaining an accurate
position of a robot in intelligent space. The proposed algorithm is also able to estimate a position of the moving robot by
using the extended Kalman filter, taking into consideration time synchronization and velocity of the robot. For realizing
the localization system, we employ several smart sensors as beacons on the ceiling in intelligent space and as a listener
attached to the robot. Finally, simulation results show the feasibility and effectiveness of the proposed localization algorithm
compared with existing trilateration algorithms. 相似文献
19.
This paper presents a novel method, which enhances the use of external mechanisms by considering a multisensor system, composed of sonars and a CCD camera. Monocular vision provides redundant information about the location of the geometric entities detected by the sonar sensors. To reduce ambiguity significantly, an improved and more detailed sonar model is utilized. Moreover, Hough transform is used to extract features from raw sonar data and vision image. Information is fused at the level of features. This technique significantly improves the reliability and precision of the environment observations used for the simultaneous localization and map building problem for mobile robots. Experimental results validate the favorable performance of this approach. 相似文献