首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
激光加热温度场的简化计算   总被引:2,自引:0,他引:2       下载免费PDF全文
李好平  王莉 《激光技术》1991,15(2):122-126
本文计算分析了激光加热金属的简化计算方法,并指出了简化计算的适用条件。  相似文献   

2.
激光加热烧结粉坯梯度功能材料温度场的研究   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
对使用脉冲激光实现GaN/Sapphire剥离技术,建立了激光剥离过程中GaN外延层一维热传导理论模型。计算分析了单脉冲辐照时,激光剥离过程中GaN外延层内的温度场分布。得到实现激光剥离阈值能量密度为400mJ/cm2,脉冲频率上限约为1400Hz,阈值条件下剥离过程中高温区分布限制在100nm以内。从而证明GaN基发光二极管(LED)外延结构无损伤激光剥离的可行性,并且为激光剥离技术参数的选取提供了理论依据。  相似文献   

5.
在激光超声检测过程中,为了合理加载脉冲激光的能量,以便获得幅值较大的超声波信号,同时避免脉冲激光造成材料的损伤,需要对脉冲激光辐照材料的温升进行数值计算。依据有限元理论,建立脉冲激光辐照材料的有限元模型,结合导热微分方程,将脉冲激光以热流密度的形式加载于材料表面,分析材料表层受激光辐照时的温度场,讨论有限元热分析时网格尺寸的选取对分析结果的影响。给出了材料表层受脉冲激光辐照时温度场的计算方法和网格尺寸的选择依据,并利用温度场的理论解析结果和应力场分析结果分别验证了温度场有限元计算方法的正确性和有效性。  相似文献   

6.
采用短脉冲激光加热浸没在丙酮液体里的钥薄膜电阻,并结合数值模拟计算,研究了高温升率条件下丙酮液体温度场随时间的变化规律及汽泡行为,得到丙酮液池温度过界层的数量级大约为30~40μm。认为薄汽膜的形成和热边界层外移是激光脉冲过后很长一段时间内汽泡依然长大的主要原因,确定了铂薄膜电阻的激光反射损失。  相似文献   

7.
建立了单脉冲激光加热下材料温度场的三维和一维理论模型,并将其进行比较,存在较大的差异。通过改变多种参数对三维模型进行研究,给出何时三维模型可以用一维模型代替,以及用无限大边界条件下得到的三维温度场模型来处理实际问题的不足。  相似文献   

8.
从经典热传导方程出发,建立了单个短脉冲激光作用双层材料的二维轴对称物理模型,在考虑材料热物理参数随温度变化的基础上,采用有限元方法模拟了材料的瞬态温度场,得到了激光作用中和作用后铝-玻璃系统的温度时空分布.数值研究结果表明,在激光作用期间,系统表面的温度分布主要取决于作用激光的能量分布特性,并且金属材料的趋肤效应导致系统在厚度方向的温升范围很浅;在激光作用后,系统内部的热量在热传导作用下从高温区移向低温区,并且厚度方向的温升范围随着表面温度降低而不断扩大,但由于铝的热传导系数比玻璃大得多,所以温升主要停留在铝膜层.  相似文献   

9.
高能脉冲激光作用下材料表面温度变化的实验研究   总被引:1,自引:1,他引:1  
通过在高能脉冲激光照射下材料表面温度变化的实验研究,测量了在高能量、极短时间尺度、温度变化率极大的情况下材料表面的温升速率和温度变化规律。通过比较在不同参数的高能脉冲激光加热下材料表面温度的变化曲线,发现激光脉冲的功率密度会影响表面温度的温升和温升速率,脉冲宽度影响材料表面温度的变化趋势,随着激光脉冲宽度的减小,材料表面工变化会出由符合傅立叶导热规律向偏离立叶导规律的逐渐转变,出现了“二次升温”等  相似文献   

10.
为了研究矩形激光脉冲辐照下半导体材料3维光生载流子浓度和温度场分布,采用本征函数法求得了等离子体波和热波随时间和空间变化的解析解。数值模拟了矩形激光脉冲辐照下半导体内光生载流子浓度和温度的时间变化规律以及温度沿径向的扩散规律。结果表明,光生载流子表面复合速率、寿命和扩散系数等参量对等离子体波和热波分布的时域特性有重要的影响,特别是在等离子体波和热波阶跃响应的上升和下降沿阶段;此外,多参量拟合灵敏度以及相关性分析表明,对阶跃响应曲线进行拟合可实现对半导体参量的单参量及双参量表征。该理论结果对于利用阶跃光激励的光热技术测量半导体材料参量具有一定的指导作用。  相似文献   

11.
裴旭  吴建华 《激光技术》2012,36(6):828-831
为了研究脉冲激光辐照金属材料时温度场的变化,采用有限元模拟软件对激光辐照材料的过程进行了模拟。得到了激光辐照过程中,材料表层及内部的瞬态温度场的变化情况。结果表明,在脉冲激光辐照金属材料过程中,激光热作用时间很短,热影响区仅限于激光光斑作用区域的材料表层。  相似文献   

12.
工件表面的激光强化效果直接取决于扫描过程中的热循环规律,为获得理想的淬硬层深及显微硬度分布,必须对激光作用的温度分布形态做出精确解析.采用有限单元法可以对各种工艺参数的变化对激光强化温度场的影响加以探讨,并辅以红外测温实验结果进行验证.结果表明,激光强化可以有效改善金属材料表面的组织性能,而工艺参数的改变对于热循环规律有着显著影响.  相似文献   

13.
应用ABAQUS模拟激光焊接温度场   总被引:1,自引:0,他引:1       下载免费PDF全文
为了减小焊接变形,优化焊接工艺,需要准确预测激光焊接过程中温度场的分布情况,使用有限元模拟来预测温度场的分布是一种较好的方法.通过分析和总结激光焊接过程有限元模拟和理论分析的研究现状,以平板的焊接为例,建立了物理模型,并利用ABAQUS进行了激光焊接三维温度场的有限元模拟,讨论了模型的网格划分、边界条件及其模拟结果的后处理.模拟结果可以给出试件上任意一点任意时刻的温度情况,在激光功率为2000W、焊接速度为20mm/s的参数下模拟焊接2mm厚的A3钢板.结果表明,最高温度为3100℃左右,距焊接中心横向mm处A点的最高温度为150℃左右,与相同参数条件下的实验结果基本一致,说明有限元模拟可以准确预测焊接过程的温度场分布情况.  相似文献   

14.
为了对膜基系统的温度分布和应力分布进行模拟研究,采用ANSYS有限元分析软件,对高斯移动激光加载条件下TiN薄膜的温度场和由温度场产生的应力场进行了稳态分析。研究结果表明,温度场随激光光源的移动而移动,温度场中温度最大点在激光光斑中心处,且激光光源移动方向后方的温度场有较大的迟滞现象。在膜基系统中产生的应力场主要集中在薄膜内部。温度场和应力场的研究对探讨膜基系统失效进程具有重要意义。  相似文献   

15.
建立激光辐照铝材料的有限元分析模型,对材料表面的温度场进行数值模拟。研究了激光光束在对材料表面扫描过程中激光扫描速度、TEM00及TEM10两种理想模式的叠加比例η的取值、材料厚度等因素对扫描结果的影响。分析了在材料上所取的几个目标点的温度场变化情况。仿真结果表明扫描的速度快慢决定了材料表面可以吸收激光能量的多少,影响材料的最高温度;η的取值决定了激光光束的能量分布情况,η值越高激光光束能量越集中,在扫描过程中目标点的温度变化越剧烈;随着深度的增加,材料内部的温度的最高值逐渐降低,温度的升高趋势逐渐趋于平缓。  相似文献   

16.
以地基激光辐照运动目标为研究背景,分析运动目标辐照参数特性对激光辐照温度场的影响。首先,在设定交互场景的基础上,求解激光辐照参数,总结运动目标激光辐照参数的特点为:平均功率密度随目标运动不断变化;辐照面域光束强度空间分布为椭圆形高斯分布;目标表面存在强制热对流。其次,利用有限容积法求解激光辐照运动目标温度场分布。最后,分析运动目标辐照参数特性对温度场分布的影响。分析结果表明:随着目标的运动,激光辐照平均功率密度不断增加,目标温升速率不断增加;激光束辐照运动目标的角度不同,辐照面域的光束强度空间分布不同,温升区域也不相同;运动目标表面存在强制热对流形式的能量交换,减缓了表面温升。  相似文献   

17.
张帆  牛燕雄  刘宁  梁振江  刘帅 《激光技术》2017,41(3):433-437
为了研究了激光与CCD传感器的作用过程及损伤机理,采用有限元分析的方法,对波长1.06μm的连续激光辐照行间转移型面阵CCD进行了理论分析和仿真研究。以基底Si表面激光辐照区域为热源建立热力耦合模型,模拟得出了CCD的温度分布和热应力分布。通过对比分析其组成材料的温度损伤和应力损伤所发生的时间,发现应力损伤先于温度损伤。结果表明,作为固定边界和自由边界的交汇处,基底Si下表面边缘处热应力于激光作用0.1s时最先超过破坏阈值120MPa,发生应力破坏; Si材料产生由下表面边缘向中心的滑移,基底逐步脱离固定; 激光作用0.3s时,遮光Al膜与SiO2膜层也因热应力超过两种材料的附着力100MPa,而产生沿径向由内向外的Al膜层剥落的应力破坏行为,这种行为将加快基底Si材料的滑移,最终致使整个CCD因脱离工作位置而失效。该研究成果为CCD传感器的激光损伤及防护提供了理论依据。  相似文献   

18.
为了研究脉冲激光加热金属板的温度场和应力场的特点,基于弹塑性力学理论,采用有限元分析方法,对脉冲激光扫描过程中金属板的温度场和应力场进行了3维数值模拟,得到了温度场与应力场在时间和空间上的分布和变化规律。结果表明,在脉冲激光扫描加热作用下,金属表面发生多次熔化和凝固,温度时间曲线呈锯齿形;重熔区域应力场变化剧烈,随间歇的激光脉冲发生强烈的拉-压应力波动;金属基体冷却后在重熔区域留有高值残余拉应力,纵向应力达799MPa,横向应力达700MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号