首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
《工程(英文)》2017,3(1):55-59
Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin transmembrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethyl­thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in response to the grafted haptotaxis stimuli.  相似文献   

2.
Regeneration of chronic skin wounds in tissue is still a key challenge in regenerative medicine because of the accumulation of senescent cells and increasing secretion of s¨enescence-associated secretory phenotype(SASP)in the wound site.Recently,some studies have reported that small extracellular vesicles(sEVs)derived from stem cells can alleviate cellular senescence with very low risk of tumorigenesis and immune responses.As our previous studies have shown that urine-derived stem cells(USCs)can be obtained easily and noninvasively and sEVs derived from USCs(USC-sEVs)have capabilities of regenerating tissue injuries,using USC-sEVs to enhance chronic skin wound healing in aged tissue might be a feasible and efficient strategy.Therefore,in this study,the USC-sEVs were collected and firstly loaded in a human acellular amniotic membrane(HAAM)for controlled releasing and locating the USC-sEVs in the wound site before they were implanted into a chronic skin wound in aged mice.In vivo results showed that the USC-sEVs in HAAM could effectively accelerate the wound healing by ameliorating cellular senescence and reducing the secretion of SASP in the aged skin wounds.To elucidate the mechanism,USC-sEVs were used to in vitro culture human dermal fibroblasts(HDFs)and results showed that USC-sEVs could rejuvenate senescent fibroblasts by reversing the aging phenotypes of senescent HDFs and efficiently reducing the secretion of SASP after they activated the Sirt1 pathway.Therefore,USC-sEVs are efficient for enhancing wound healing in aged mice by ameliorating cellular senescence.  相似文献   

3.
Abstract

Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.  相似文献   

4.
Urological reconstructive surgery is sometimes hampered by a lack of tissue. In some cases, autologous urothelial cells (UCs) are not available for cell expansion and ordinary tissue engineering. In these cases, we wanted to explore whether autologous mesenchymal stem cells (MSCs) from bone marrow could be used to create urological transplants. MSCs from human bone marrow were cultured in vitro with medium conditioned by normal human UCs or by indirect co-culturing in culture well inserts. Changes in gene expression, protein expression and cell morphology were studied after two weeks using western blot, RT-PCR and immune staining. Cells cultured in standard epithelial growth medium served as controls. Bone marrow MSCs changed their phenotype with respect to growth characteristics and cell morphology, as well as gene and protein expression, to a UC lineage in both culture methods, but not in controls. Urothelial differentiation was also accomplished in human bone marrow MSCs seeded on a three-dimensional poly(ε-caprolactone) (PCL)–collagen construct. Human MSCs could easily be harvested by bone marrow aspiration and expanded and differentiated into urothelium. Differentiation could take place on a three-dimensional hybrid PCL-reinforced collagen-based scaffold for creation of a tissue-engineered autologous transplant for urological reconstructive surgery.  相似文献   

5.
Abstract

Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.  相似文献   

6.
Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF–Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF–Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.  相似文献   

7.
Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration.  相似文献   

8.
There is currently no suitable replacement for damaged temporomandibular joint (TMJ) discs after discectomy. In the present study, we fabricated bilayer biodegradable polylactide (PLA) discs comprising a non-woven mat of poly(L/D)lactide (P(L/D)LA) 96/4 and a P(L/DL)LA 70/30 membrane plate. The PLA disc was examined in combination with adipose stem cells (ASCs) for tissue engineering of the fibrocartilaginous TMJ disc in vitro. ASCs were cultured in parallel in control and chondrogenic medium for a maximum of six weeks. Relative expression of the genes, aggrecan, type I collagen and type II collagen present in the TMJ disc extracellular matrix increased in the ASC-seeded PLA discs in the chondrogenic medium. The hypertrophic marker, type X collagen, was moderately induced. Alcian blue staining showed accumulation of sulphated glycosaminoglycans. ASC differentiation in the PLA discs was close to that observed in pellet cultures. Comparison of the mRNA levels revealed that the degree of ASC differentiation was lower than that in TMJ disc-derived cells and tissue. The pellet format supported the phenotype of the TMJ disc-derived cells under chondrogenic conditions and also enhanced their hyalinization potential, which is considered part of the TMJ disc degeneration process. Accordingly, the combination of ASCs and PLA discs has potential for the development of a tissue-engineered TMJ disc replacement.  相似文献   

9.
王芮  姜立新 《声学技术》2017,36(3):257-261
肿瘤干细胞(Cancer Stem Cell,CSCs)是肿瘤细胞中具有自我更新和多向分化能力的细胞,与肿瘤的发生、增殖、转移和耐药等生物学行为关系密切,CSCs的活体示踪对于实时监测CSCs在体内的生物学行为具有重要意义。目前常见CSCs活体示踪的分子影像学方法包括:超声成像、核磁共振成像(Magnetic Resonance Imaging,MRI)、光学成像、核医学成像(Positron Emission Tomography-Computed Tomography,PET-CT)、光声成像、多模态成像。这些成像方法的发展对于CSCs的研究具有重大意义,对于CSCs的研究有助于临床诊断及治疗,有利于诊疗一体化进程的发展。文章就CSCs活体示踪的分子影像学研究进展进行了综述。  相似文献   

10.
An exacerbated inflammatory response questions biomaterial biocompatibility, but on the other hand, inflammation has a central role in the regulation of tissue regeneration. Therefore, it may be argued that an ‘ideal’ inflammatory response is crucial to achieve efficient tissue repair/regeneration. Natural killer (NK) cells, being one of the first populations arriving at an injury site, can have an important role in regulating bone repair/regeneration, particularly through interactions with mesenchymal stem/stromal cells (MSCs). Here, we studied how biomaterials designed to incorporate inflammatory signals affected NK cell behaviour and NK cell–MSC interactions. Adsorption of the pro-inflammatory molecule fibrinogen (Fg) to chitosan films led to a 1.5-fold increase in adhesion of peripheral blood human NK cells, without an increase in cytokine secretion. Most importantly, it was found that NK cells are capable of stimulating a threefold increase in human bone marrow MSC invasion, a key event taking place in tissue repair, but did not affect the expression of the differentiation marker alkaline phosphatase (ALP). Of significant importance, this NK cell-mediated MSC recruitment was modulated by Fg adsorption. Designing novel biomaterials leading to rational modulation of the inflammatory response is proposed as an alternative to current bone regeneration strategies.  相似文献   

11.
生物材料表面的粗糙度是影响细胞行为的重要因素之一。为了调控丝蛋白生物材料表面的粗糙度,并评价材料表面粗糙度对细胞生长行为的影响,首先,通过湿化学共沉淀法,以柞蚕丝胶(AS)溶液为模板,诱导了羟基磷灰石(HAp)晶体成核,进而调控了AS膜表面的粗糙度。然后,采用SEM、粗糙仪、FTIR及EDX等对HAp/AS复合膜表面形貌、粗糙度及成分进行了表征。最后,通过SEM和CellTiter 96?AQueous单溶液细胞增殖检测试剂盒(MTS)检测了骨髓间充质干细胞(BMSCs)在HAp/AS复合膜表面的形貌及增殖率。结果表明:纯AS膜的表面粗糙度为0.15μm,矿化1、8及24h后,表面粗糙度分别为0.38、0.46和1.20μm;矿化24h后,在HAp/AS复合膜表面可观察到直径为30~80nm的球状复合物,生成的矿化物为HAp;HAp/AS复合膜具有良好的细胞相容性,表面粗糙度为1.20μm的复合膜能够显著促进BMSCs的增殖,粗糙度对BMSCs在HAp/AS复合膜表面的粘附和形貌有着重要的影响。因此,可通过矿化的方法在生物大分子表面诱导HAp晶体的成核与生长,从而调控材料的表面粗糙度,研究材料界面上的细胞行为。  相似文献   

12.
The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号