首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
研究了通过控制溶液氧化还原电位氧化脱除粗CoSO_4溶液中的Mn~(2+)。利用Na_2S_2O_8(2.08V)、Mn~(2+)(1.3V)、Co~(2+)(1.8V)在溶液中最高氧化还原电位之间的差异,通过控制CoSO_4溶液Me-H_2O系的氧化还原电位,以Na_2S_2O_8作氧化剂,氧化脱除溶液中的Mn~(2+)。结果表明:在溶液电位为0.4~1.3V、Na_2S_2O_8用量为4倍锰理论物质的量、溶液氧化终点pH为5.0~5.5、Na_2S_2O_8浓度为0.1mol/L、温度为60℃、反应时间为1h、搅拌速度为250r/min条件下,Mn~(2+)最高脱除率达99.5%,钴氧化损失率在5%以内,Mn~(2+)的氧化脱除效果较好。  相似文献   

2.
采用Lix984作萃取剂,煤油作稀释剂混合而成溶液萃取的有机相,从含Ni~(2+),Fe~(3+),Mg~(2+)离子的硫酸盐溶液中萃取分离Cu~(2+).实验结果表明,在一定范围内,铜萃取率随萃取剂浓度的升高、相比的增加、萃取时间的延长、初始水相pH值的增加、萃取温度的升高以及搅拌时间的延长而增加.本实验的优化条件为萃取剂体积分数达60%,相比为O∶A=2∶1,萃取时间为16 min,萃取初始水相pH值为2.5,萃取温度在25~45℃之间,搅拌速度为240 r/min.在最佳条件下,铜萃取率高达95.55%.Fe~(3+)萃取率为8.82%,Ni~(2+)的萃取率为5.47%,Mg~(2+)的萃取率为2.36%.从而达到Cu~(2+)与其它金属离子有效分离的效果.  相似文献   

3.
探究了锰矿酸浸工段产生的废气中CO2回收脱锰后电解锰废水中Mg~(2+)、Ca~(2+)、NH4+-N可行性,确定了CO2回收废水中Mg~(2+)、Ca~(2+)、NH4+-N最佳工艺条件及其作用机理。结果表明,在反应时间240min、反应温度45℃、pH=9.2、二氧化碳体积浓度15%、搅拌速率600r/min的条件下,初始Mg~(2+)、Ca~(2+)、NH4+-N浓度为1 200、560、875mg/L废水中各元素回收率分别可达97.58%、99.68%、80.71%;回收Mg~(2+)反应符合一级动力学方程,其表观活化能为61.40kJ/mol,主要受扩散过程控制;废水中Mg~(2+)、Ca~(2+)主要通过形成Mg(OH)2·MgCO3沉淀被回收,其中NH4+-N则主要通过吸附在新生成沉淀晶体表面得以去除。  相似文献   

4.
研究了NaOH法、十二烷基苯磺酸钠(SDBS)法和磷酸活化法对桑杆生物质吸附剂的改性及改性后桑杆吸附剂对Cd~(2+)的吸附性能,优化了改性条件和吸附工艺条件,考察了改性后的桑杆吸附剂对废水中Cd~(2+)的吸附效果。结果表明:1)NaOH法、SDBS法和H3PO4活化法对桑杆吸附剂进行改性均能提高桑杆吸附剂对Cd~(2+)的吸附能力;相同条件下,3种改性方法的改性效果排序为NaOH法SDBS法H3PO4法,改性后吸附剂对Cd~(2+)的吸附率分别达98.15%、96.81%和88.62%。2)NaOH法优化改性条件:NaOH质量浓度50g/L,温度25℃,时间3h;SDBS法优化改性条件:SDBS质量浓度30g/L,温度25℃,时间3h;H3PO4活化法的优化改性条件:浸渍比1∶2,H3PO4浓度1mol/L,活化温度150℃,活化时间5h。3)吸附时间、温度、吸附剂用量、溶液pH及Cd~(2+)初始浓度对改性吸附剂吸附Cd~(2+)效果有不同程度影响:NaOH法改性吸附剂对Cd~(2+)的适宜吸附条件为吸附剂用量5g/L,吸附温度35℃,吸附时间3h,溶液pH=6;SDBS法改性吸附剂对Cd~(2+)的适宜吸附条件为吸附剂用量7.5g/L,吸附温度35℃,吸附时间3h,溶液pH=6;H3PO4法改性吸附剂对Cd~(2+)的适宜吸附条件为吸附剂用量7.5g/L,吸附温度35℃,吸附时间3h,溶液pH=5。3种方法改性所得桑杆吸附剂对低浓度Cd~(2+)的吸附效果不佳,Cd~(2+)初始质量浓度大于15mg/L时吸附效果明显。  相似文献   

5.
以酸法处理失效汽车尾气净化器催化剂的浸出渣作为吸附剂,对废水模拟液中重金属Cu~(2+)、Cd~(2+)进行分离,考察了温度、pH、吸附剂用量和吸附时间对Cu~(2+)、Cd~(2+)吸附率的影响,得到了最优吸附条件:温度50℃、pH值5.5、吸附剂0.5g及吸附时间1h。在最优条件下,吸附剂对20mg/L的Cu~(2+)、Cd~(2+)吸附率分别为99.95%、99.22%,对1g/L的Cu~(2+)、Cd~(2+)饱和吸附量分别为99.61、42.17mg/g。浸出渣对Cu~(2+)、Cd~(2+)的吸附均符合二级动力学模型,吸附过程以化学吸附为主。  相似文献   

6.
采用单因素和正交试验法研究了常压下用硫酸从橄榄石中溶解浸出Mg~(2+),考察了橄榄石颗粒粒度、浸出温度、硫酸浓度、浸出时间、液固体积质量比和搅拌速度对Mg~(2+)浸出率的影响。结果表明:温度对Mg~(2+)浸出率的影响显著;在90℃、硫酸浓度4 mol/L、搅拌速度400r/min、浸出时间180 min、橄榄石颗粒粒度-63μm和液固体积质量比20mL/g条件下,Mg~(2+)浸出率达99%。  相似文献   

7.
在SmCl_3和ZnCl_2的混合溶液中添加NH_4Cl,研究了用草酸沉淀法分离Sm~(3+)和Zn~(2+),并对料液中NH_4Cl、SmCl_3、ZnCl_2浓度、沉淀母液pH和沉淀温度对Sm_2O_3产品中ZnO含量影响进行了分析与讨论。结果表明,料液中SmCl_3、ZnCl_2和NH_4Cl浓度分别为0.60 mol·L~(-1)~0.75 mol·L~(-1)、≤0.18 mol·L~(-1)和4 mol·L~(-1),沉淀母液pH为5~6,反应温度80℃,得到的Sm_2O_3产品中ZnO含量小于0.0025%。本工艺已实现产业化,操作简单,产品质量稳定。  相似文献   

8.
采用两段沉淀法净化某废旧高温合金浸出液,第一段采用质量分数为15%的磷酸钠溶液作为沉淀剂,机械搅拌条件下,控制终点pH 2.5,温度70℃,反应时间2h,铬、铝的除杂率均在90%以上;第二段采用质量分数为15%的氢氧化钠溶液作为沉淀剂,机械搅拌条件下,控制终点pH 5.5,温度70℃,反应时间2h,铬、铝的脱除率均在99%以上,所得净化液可直接进行下一步镍钴分离处理,扩大试验结果表明,此工艺有良好的工业应用前景。  相似文献   

9.
以立方纳米碳酸钙为模板,通过离子交换法,制备得到了纺锤形纳米羟基磷灰石(HAP)。考察了反应温度、pH值等因素对颗粒制备的影响,得到的较优工艺条件为:在pH=10,反应温度60℃,反应4h的条件下,可制备出纺锤形纳米HAP。所制备的样品由HAP晶须排列构成,粒径在150~200 nm,形貌良好且分散均一。纺锤形纳米HAP的重金属Pb2+脱除实验结果表明,随着pH值的降低和脱除温度的升高,Pb2+的脱除率增加,较优的脱除条件为pH<2.5、脱除温度40℃、搅拌时间60 min。在此条件下,Pb2+脱除率大于99.7%。  相似文献   

10.
采用芬顿法氧化脱除硫酸锰溶液中残余的有机物。通过基于Box-Behnken设计的响应面法对初始pH值、Fe~(2+)离子投加量和H_2O_2/Fe~(2+)摩尔比的工艺参数进行研究并优化,以COD脱除率为响应值。结果表明:Fe~(2+)离子投加量对COD脱除率的影响最显著,H_2O_2/Fe~(2+)摩尔比次之,初始pH值最小;在Fe~(2+)的投加量为29.47 mmol/L,H_2O_2/Fe~(2+)摩尔比为5.00,初始pH值为3.11的条件下,COD脱除率可达74.50%,与响应面模型预测值误差小于2%。证明利用芬顿反应脱除硫酸锰溶液中残余有机物的方法是可行的。  相似文献   

11.
采用"硫化除杂——氧化除铁钴——氟化除钙镁——萃取除锌——蒸发结晶"工艺处理粗硫酸镍结晶,可有效地脱除其所携带的杂质金属,实验结果证明:以H_2S为硫化剂对硫酸镍溶液进行硫化处理,溶液中铜、砷、铋脱除率大于99.9%;以Cl_2为强化氧化剂对硫化后液进行处理,溶液中铁、钴脱除率大于99.9%;以NiF_2为添加剂,溶液中Ca~(2+)脱除率98.44%,Mg~(2+)脱除率97.24%;以P204作萃取剂,溶液中的Zn~(2+)萃除率大于99.9%,最终蒸发结晶所得硫酸镍主品位20.03%,纯度98.60%,全流程镍回收率93.51%。  相似文献   

12.
《湿法冶金》2021,40(4)
研究了采用锌粉置换—双氧水氧化—水解沉淀法从溶液中分离铟和锡,考察了溶液pH、搅拌速度、反应温度、反应时间等因素对锡置换,以及温度对Sn~(4+)水解、铟回收率的影响。结果表明:在pH为1.0~2.0、反应温度40℃、搅拌速度120 r/min、反应时间4 h条件下,锡置换率约为91%,海绵锡中锡质量分数大于98%,铟质量分数小于0.2%;置换后液经双氧水氧化后,在80℃、溶液pH=2.5条件下水解,抽滤洗涤后获得氢氧化锡沉淀,锡沉淀率为99%以上,氢氧化锡中铟质量分数小于0.5%;铟、锡分离较彻底,回收率较高。  相似文献   

13.
《稀土》2016,(3)
采用溶胶凝胶-燃烧法合成Sr_(2-x-y)Ca_xMg_yAl_2SiO_7∶Eu~(2+)稀土长余辉发光材料,通过TG-DTA、XRD、SEM和荧光光谱分析等方法,研究了材料的结构、颗粒形貌和发光性能,并对Ca~(2+)、Mg~(2+)、Eu~(2+)不同掺杂浓度下的发光性能进行了对比研究。结果表明,适量掺杂Ca~(2+)、Mg~(2+)、Eu~(2+)后,基质的晶格结构并未发生变化,为Sr_2Al_2SiO_7晶粒,粒径在1 um~4 um,其激发光谱是位于峰值340 nm~360 nm的宽带谱,发射光谱峰值位于460 nm~480 nm。掺杂Ca~(2+)、Mg~(2+)后发光强度得到提高,镁元素的掺杂可引起发射波长向长波方向移动,而钙元素掺杂可引起发光强度的增大。影响材料发光性能的主要因素是钙,其次是铕,在实验条件下当Ca~(2+)的掺杂量为0.2,Mg~(2+)的掺杂量为0.1,Eu~(2+)的掺杂量为0.04时发光强度为最大,其发射光谱峰值位于469 nm处,最大发射光谱强度达到了8500。  相似文献   

14.
控制试验溶液中Mn~(2+)浓度18.75g/L、(NH_4)_2SO_4浓度100g/L,研究Mg~(2+)浓度对硫酸锰电解液理化性质的影响。结果表明,随着Mg~(2+)浓度的增加,不同温度梯度下硫酸锰电解液的密度、电导率以及黏度均呈上升趋势,而表面张力逐渐下降。当Mg~(2+)浓度一定时,随着温度的升高,硫酸锰电解液的密度、黏度及表面张力呈下降趋势,而电导率逐渐增加。  相似文献   

15.
提出了利用磷酸盐从还原预处理后的电镀污泥浸出液中优先分离铬的工艺,并从理论上证明了铬铁分离的可行性,探讨了磷酸钠用量、溶液初始pH、反应温度、保温时间对铬铁分离效果的影响。优化条件为:PO_4~(3-)/Cr~(3+)摩尔比1.1、溶液初始pH 2.0、反应温度80℃、保温时间60 min、搅拌转速400r/min,铬和铁沉淀率分别为96.0%和0.68%,铬铁单级分离系数141.2。  相似文献   

16.
研究了采用芬顿氧化—活性炭吸附法从锰矿石浸出液中深度脱除残余有机物,考察了双氧水用量、H_2O_2/Fe~(2+)物质的量比、浸出液初始pH、反应温度和反应时间对COD脱除率的影响,以及活性炭用量、吸附温度和吸附时间对COD进一步脱除的影响。结果表明:在双氧水用量0.15 mol/L、H_2O_2/Fe~(2+)物质的量比为3、浸出液初始pH=3、反应温度50℃、反应时间90 min条件下,COD脱除率为83.17%;在芬顿氧化基础上,用活性炭进一步吸附脱除有机物,最优吸附条件为活性炭用量3.75 g/L,吸附温度70℃,吸附时间120 min。在该条件下,COD脱除率达93.11%。  相似文献   

17.
浮选、表面电特性及吸附量测定试验表明,在强碱性介质中,Na_2CO_3、NaF 对 Ca~(2+)活化的绿柱石、锂辉石的抑制强弱顺序为 Na_2CO_3>NaF,作用机理为 CO_3~(2-)、F~-吸附到矿物表面,致使矿物亲水性增加。Na_2S 对 Fe~(3+)活化的矿物有较强的抑制作用,系 HS~-和 Na_2S 水解使矿浆 pH上升综合作用的结果,Na_2S 氧化产物不具抑制作用。Na_2S 对绿柱石上吸附的铁的选择性解吸,可能为绿柱石进一步吸附 Ca~(2+)创造有利条件。  相似文献   

18.
砷和铁是湿法炼锌系统回收镓、锗工艺中主要的杂质元素,萃取分离工艺可实现砷铁的高效脱除,但得到的反萃液为高砷铁溶液,且含有少量镓、锗。为实现镓、锗的高效回收,采用中和沉淀法实现砷、铁与镓、锗的分离,考察沉淀终点pH、反应温度、反应时间、搅拌速度等参数对各金属离子沉淀率的影响。结果表明,在沉淀终点pH=2.5、反应温度25 ℃、反应时间1 h、搅拌速度240 r/min的最优条件下,铁和砷的脱除率分别为92.80%、98.13%,镓、锗的损失率分别为45.61%、7.35%。中和渣中损失的镓、锗可用弱酸溶液洗涤,酸洗液与中和后液共同返回到萃取系统回收镓和锗,提高综合回收过程中镓和锗的直收率。  相似文献   

19.
采用沉淀法合成LiMn_(2-x)Al_xO_4(x=0.01,0.05,0.10,0.20),pH的范围为10.5~10.6,搅拌速度为350 r/min,水浴温度为55℃,分两次烧结.首次煅烧温度为680℃,保温时间为18 h;第二次煅烧温度为850℃,保温时间为18 h.利用X射线衍射、扫描电子显微镜和电化学方法测试最终产物.测试结果表明:Al~(3+)的掺入有效地改善了LiMn_2O_4的高温循环性能,使其高温循环容量衰减得到了有效的抑制,尤其当Al~(3+)的掺入量为0.05时,有比其他掺杂量更优的性能.  相似文献   

20.
研究了采用十二烷基苯磺酸钠(SDBS)对桑杆吸附剂进行改性,考察了改性桑杆吸附剂对Cd~(2+)的吸附动力学及吸附等温线,表征了改性前后、吸附前后桑杆吸附剂表面官能团的结构。结果表明:1)用SDBS改性后的桑杆吸附剂中多个官能团的特征吸收峰明显变强,表明SDBS已结合在桑杆吸附剂上,改性有效;改性吸附剂吸附Cd~(2+)后,羟基和C—O官能团的吸收峰变强变宽,表明桑杆表面的这些官能团是Cd~(2+)吸附反应的结合点位。2)改性桑杆吸附剂对水溶液中Cd~(2+)的吸附容量较大,在吸附时间3 h、吸附温度50℃、溶液中Cd~(2+)初始质量浓度25 mg/L、溶液pH=7、吸附剂用量7.5 g/L条件下,Cd~(2+)吸附率可达96.8%以上。3)改性桑杆吸附剂对Cd~(2+)的吸附过程可用准二级动力学吸附模型加以描述,吸附过程符合Freunndlich等温吸附模型,吸附易于进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号