首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The international trade by marine transportation has increased continuously since the 70s. The undesirable accumulation of a wide variety of marine organisms (biofouling) on ship hulls can lead to significant increased costs, principally by increased fuel consumption. On the other hand, there is a great concern about the biocides commonly used in commercial antifouling (AF) protective systems due to the high concentration encountered in coastal areas and the potential damage they could cause to marine organisms. As a consequence, the development of alternative AF coatings with new natural products as biocides inhibit is a key factor. In this approach, tara tannin (TT) is being proposed as a promising solution. It is important to note that TT is obtained from the pods of the tree avoiding its cutting down. The aim of this research was, primarily, to explore the possible application of a natural and abundant product, such as the TT, in the preparation of AF coatings. So, a TT derivative was obtained and characterized to be employed as the bioactive compound in AF coatings. Previous to the immersion in natural environments, the dissolution of TT from AF coating in artificial sea water (ASW) was studied. TT was incorporated into the coating as zinc “tannate”. One of the tested coatings proved to be efficient in AF protection in natural sea water (NSW) at Mar del Plata (38°08′17″S–57°31′18″W) harbor during eight months. The addition of 2% by weight of zinc oxide to the coating extended its service life until the year.  相似文献   

2.
The undesirable accumulation of marine organisms on any surfaces immersed in seawater is termed as marine fouling. This natural phenomenon contributes a major economic concern for marine industries, e.g. for ships, vessels, oil, wind-turbine sea-platforms, pipelines, water valves and filters by limiting the performances of the devices and materials. In the last decades, several efforts have been employed in the development of efficient antifouling (AF) coatings by following the recent trend in materials science. The current review presents the research and development made in AF strategies for coatings based on two main approaches, detachment of biofoulants or preventing biofoulants attachment.  相似文献   

3.
In recent years, antifouling (AF) polymers are widely used in marine paints to protect the ship hulls from biofouling. The AF polymer coatings have better leaching characteristics and long lasting efficiency than other conventional formulations. In this study, an attempt has been made to prepare new p‐acryloyloxybenzaldehyde(AcBA) polymers to assess their AF efficiency against marine microfoulers. The monomer, AcBA was prepared by the esterification reaction between p‐hydroxybenzaldehyde (HBA) and acryloyl chloride (Ac) in presence of triethylamine (TEA) in MEK at 0°C. The reaction was monitored by TLC and the prepared monomer was characterized by UV, IR, 1H‐NMR and GC‐MS. The homo‐[poly(AcBA)] and co‐polymers [poly(AcBA‐co‐MMA)] were prepared by solution polymerization using BPO as initiator. To find out the AF activity of prepared polymers, representatives of marine microfoulers, shipfouling bacteria (Bacillus macroides and Pseudomonas aeruginosa) and microalgae (Amphora coffeaeformis and Navicula incerta) were screened. The contact toxicity and diatom attachment assays were conducted with prepared polymers and microfouling formation on coatings was also investigated using a tubular biofilm reactor. AF potential of these polymers coating is demonstrated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Natural rubber is a renewable resource with a potential as precursor of a very wide range of novel polymers, including polyisoprene-based surfaces with antifouling (AF) activity. In this work, new ionic and non-ionic coatings were prepared by the photocrosslinking reaction of photosensitive cis-1,4-oligoisoprenes, bearing a variable number of ammonium groups. The photochemical crosslinking was achieved using radical (via acrylate groups) or cationic (via epoxy groups) processes. Surface properties of these coatings were studied by static contact angle measurements and AFM imaging. Assessment of bioactivity demonstrated that most of the resulting coatings showed AF potential against fouling organisms: growth inhibition of marine bacteria (Pseudoalteromonas elyakovii, Shewanella putrefaciens, Cobetia marina, Polaribacter irgensii, Vibrio aestuarianus) and fungi (Halosphaeriopsis mediosetigera, Asteromyces cruciatus, Lulworthia uniseptata, Zalerion sp., Monodictys pelagica); decreased adhesion of microalgae (Navicula jeffreyi, Cylindrotheca closterium, Chlorarachnion globosum, Pleurochrysis roscoffensis, Exanthemachrysis gayraliae, Amphora coffeaeformis); inhibition of attachment and/or germination of spores of Ulva intestinalis. The best AF activity was obtained with the ionic surfaces. These new coatings prepared from precursors obtained from natural rubber are in essence active by contact. As the biocidal functions are fixed covalently to the polymer chain, detectable release of biocidal products in the marine ecosystem is prevented so that a valuable environment-friendly alternative for new AF coatings is hereby proposed.  相似文献   

5.
Atrial fibrillation (AF) is the most prevalent and progressive cardiac arrhythmia worldwide and is associated with serious complications such as heart failure and ischemic stroke. Current treatment modalities attenuate AF symptoms and are only moderately effective in halting the arrhythmia. Therefore, there is an urgent need to dissect molecular mechanisms that drive AF. As AF is characterized by a rapid atrial activation rate, which requires a high energy metabolism, a role of mitochondrial dysfunction in AF pathophysiology is plausible. It is well known that mitochondria play a central role in cardiomyocyte function, as they produce energy to support the mechanical and electrical function of the heart. Details on the molecular mechanisms underlying mitochondrial dysfunction are increasingly being uncovered as a contributing factor in the loss of cardiomyocyte function and AF. Considering the high prevalence of AF, investigating the role of mitochondrial impairment in AF may guide the path towards new therapeutic and diagnostic targets. In this review, the latest evidence on the role of mitochondria dysfunction in AF is presented. We highlight the key modulators of mitochondrial dysfunction that drive AF and discuss whether they represent potential targets for therapeutic interventions and diagnostics in clinical AF.  相似文献   

6.
Atrial fibrillation (AF) is the most common age-related cardiac arrhythmia worldwide and is associated with ischemic stroke, heart failure, and substantial morbidity and mortality. Unfortunately, current AF therapy is only moderately effective and does not prevent AF progression from recurrent intermittent episodes (paroxysmal) to persistent and finally permanent AF. It has been recognized that AF persistence is related to the presence of electropathology. Electropathology is defined as structural damage, including degradation of sarcomere structures, in the atrial tissue which, in turn, impairs electrical conduction and subsequently the contractile function of atrial cardiomyocytes. Recent research findings indicate that derailed proteostasis underlies structural damage and, consequently, electrical conduction impairment. A healthy proteostasis is of vital importance for proper function of cells, including cardiomyocytes. Cells respond to a loss of proteostatic control by inducing a heat shock response (HSR), which results in heat shock protein (HSP) expression. Emerging clinical evidence indicates that AF-induced proteostasis derailment is rooted in exhaustion of HSPs. Cardiomyocytes lose defense against structural damage-inducing pathways, which drives progression of AF and induction of HSP expression. In particular, small HSPB1 conserves sarcomere structures by preventing their degradation by proteases, and overexpression of HSPB1 accelerates recovery from structural damage in experimental AF model systems. In this review, we provide an overview of the mechanisms of action of HSPs in preventing AF and discuss the therapeutic potential of HSP-inducing compounds in clinical AF, as well as the potential of HSPs as biomarkers to discriminate between the various stages of AF and recurrence of AF after treatment.  相似文献   

7.
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.  相似文献   

8.
9.
海洋微生物抗肿瘤活性物质的研究进展   总被引:13,自引:0,他引:13  
从海洋微生物中寻找和开发抗肿瘤药物是前途广阔的新领域。近年来,从海洋微生物中分离到许多结构新颖的抗肿瘤活性物质。本文按微生物种类,综述近几年海洋细菌、海洋放线菌及海洋真菌抗肿瘤活性物质的研究进展。  相似文献   

10.
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.  相似文献   

11.
Atrial fibrillation (AF), the most common cardiac arrhythmia worldwide, is driven by complex mechanisms that differ between subgroups of patients. This complexity is apparent from the different forms in which AF presents itself (post-operative, paroxysmal and persistent), each with heterogeneous patterns and variable progression. Our current understanding of the mechanisms responsible for initiation, maintenance and progression of the different forms of AF has increased significantly in recent years. Nevertheless, antiarrhythmic drugs for the management of AF have not been developed based on the underlying arrhythmia mechanisms and none of the currently used drugs were specifically developed to target AF. With the increased knowledge on the mechanisms underlying different forms of AF, new opportunities for developing more effective and safer AF therapies are emerging. In this review, we provide an overview of potential novel antiarrhythmic approaches based on the underlying mechanisms of AF, focusing both on the development of novel antiarrhythmic agents and on the possibility of repurposing already marketed drugs. In addition, we discuss the opportunity of targeting some of the key players involved in the underlying AF mechanisms, such as ryanodine receptor type-2 (RyR2) channels and atrial-selective K+-currents (IK2P and ISK) for antiarrhythmic therapy. In addition, we highlight the opportunities for targeting components of inflammatory signaling (e.g., the NLRP3-inflammasome) and upstream mechanisms targeting fibroblast function to prevent structural remodeling and progression of AF. Finally, we critically appraise emerging antiarrhythmic drug principles and future directions for antiarrhythmic drug development, as well as their potential for improving AF management.  相似文献   

12.
The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906–3920] and the simplified biofilm growth model of Gujer and Wanner [W. Gujer, O. Wanner, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley–Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent, polishing behaviour of AF paints. It is concluded that the perturbation of the local sea water conditions (e.g. pH), as a consequence of the metabolic activity of the biofilm should not affect the net biocide leaching and binder reaction rates significantly. This results from the thin and poorly active biofilms which presumably grow onto the highly effective modern AF paints. According to simulations, the experimental decrease in the biocide leaching rate caused by biofilm growth must be mainly attributed to adsorption of the biocide by the exopolymeric substances secreted by the microorganisms. The effects of biofilms on the leaching of any generic active compound (e.g. natural antifoulants) are discussed in relation to their potential release mechanisms. The largest influence of biofilms is predicted for those active compounds that are released by a diffusion-controlled mechanism (typically tin-free algaecides).  相似文献   

13.
Dilute solutions of high molecular weight polymers have drawn a great deal of interest in recent years because of their drag reducing characteristics. It is well-known now that a substantial reduction in turbulent frictional drag can be achieved with a very small amount of polymeric additives, usually only a few parts per million by weight (ppmw) in concentration. This unique phenomenon has offered a new dimension in the design development of new marine systems for higher speed, longer range, larger payload as well as possibly quieter machinery. Although the discovery of this turbulent drag reduction phenomenon may be traced back to Toms1 and Mysels2 in the 1940's, the U.S. Navy's exploration of the turbulent drag reduction effect did not begin until the pioneering effort of Hoyt and Fabula in the 1960's. 3 During a period of several years in the early 19707apos;s, an interdisciplinary group at the Naval Research Laboratory undertook an intensive basic research effort to study the effects of polymer molecular structure on turbulent drag reduction. Model compounds were synthesized in the laboratory, and their drag reducing properties characterized. Polymers including polyacrylamide and its derivatives, polyacrylic acid, poiyphosphate and association colloids have been investigated. In this report, an attempt is made to highlight some of the results from that program in a brief summary form.  相似文献   

14.
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.  相似文献   

15.
Transparent coatings releasing an antifouling agent (AF) can be used to reduce the marine fouling of optical lenses. A variety of water‐borne coatings based on poly(methyl methacrylate‐co‐butyl acrylate) (PMMA‐co‐PBA) were synthesized using a two‐stage miniemulsion process. During this process, the AF, SeaNine 211, was nanoencapsulated in domains small enough not to scatter light. The release rate of SeaNine 211 was studied for the polymers of different Tg, and found to be sufficient to impart AF properties. However, over time, the coatings were found to develop a whitish aspect (blushing) due to water retrodiffusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
Effluents, such as liquid manure and silage effluents, stored in silos often made of concrete, contain organic acids that are chemically very aggressive for the cement-based matrix. The pH of liquid manure is comprised between 6 and 8, and the pH of silage effluent is about 4.There has already been much research done on manure's effect on concrete using aggressive solutions with a pH of or inferior to 4, in order to accelerate alteration kinetics. These studies aimed at simulating liquid manure and silage effluent, equally.The goal of this article is to validate the use of solutions with a pH of 4 to implement accelerated studies on alterations occurring to structures exposed to the acidic part of liquid manure.In this study, the alteration mechanisms of the cement-based matrix produced by two solutions of organic acids with pH of 4 and 6 were compared.At the end of the experiment, carried out on ordinary Portland cement and slag cement pastes, the kinetics of alteration of the cement pastes immersed in the solution with a pH of 4 was ninefold higher than in the solution with a pH of 6.The chemical and mineralogical modifications of the paste were analyzed by electron microprobe, XRD and BSE mode observations.It was shown that the alteration mechanisms of the paste are sensibly identical for both solutions: almost complete decalcification, the disappearance of the crystallized or amorphous hydrated phases and the probable formation of a silica gel containing aluminum and iron, mainly. The differences in alteration mechanisms between the two solutions are minor and mainly concern the stability of the anhydrous phases: C4AF and slag grains.  相似文献   

17.
The introduction of NGS in genetic diagnosis has increased the repertoire of variants and genes involved and the amount of genomic information produced. We built an allelic-frequency (AF) database for a heterogeneous cohort of genetic diseases to explore the aggregated genomic information and boost diagnosis in inherited retinal dystrophies (IRD). We retrospectively selected 5683 index-cases with clinical exome sequencing tests available, 1766 with IRD and the rest with diverse genetic diseases. We calculated a subcohort’s IRD-specific AF and compared it with suitable pseudocontrols. For non-solved IRD cases, we prioritized variants with a significant increment of frequencies, with eight variants that may help to explain the phenotype, and 10/11 of uncertain significance that were reclassified as probably pathogenic according to ACMG. Moreover, we developed a method to highlight genes with more frequent pathogenic variants in IRD cases than in pseudocontrols weighted by the increment of benign variants in the same comparison. We identified 18 genes for further studies that provided new insights in five cases. This resource can also help one to calculate the carrier frequency in IRD genes. A cohort-specific AF database assists with variants and genes prioritization and operates as an engine that provides a new hypothesis in non-solved cases, augmenting the diagnosis rate.  相似文献   

18.
以六氟双酚A和4,4′–二氟二苯酮为原料,以N–甲基吡咯烷酮为溶剂采用新的合成工艺合成含三氟甲基聚芳醚酮,采用傅里叶变换红外光谱、核磁共振波谱及X射线衍射等对聚合物的结构和性能进行分析和表征。结果表明,采用新工艺合成的聚芳醚酮与传统工艺合成的树脂的热性能基本一致,具有良好的耐热性能,其玻璃化转变温度为162.6℃,氮气中5%热失重温度为517.1℃;80 kHz下含三氟甲基聚芳醚酮的介电常数为1.55,具有良好的电绝缘性;室温下能溶解于N–甲基吡咯烷酮、氯仿、四氢呋喃等有机溶剂。  相似文献   

19.
FL Zhu  QQ Feng 《火与材料》2020,44(6):844-853
In this study, radiant reflective, flame retardant and water vapor permeable coatings were fabricated on aramid fabric (AF) for thermal radiation protective clothing by using a simple cost-effective coating method, which included an aluminum paste, APP-PER-MEL and a silk fibroin powder in the TPU solution system. The permeability, flame retardancy, thermal stability, radiative spectral reflectance, as well as RPP of these prepared fabrics were characterized and compared with the pure AF and aluminum-foiled AF (AF-AF). Results show that the newly developed aluminized AF had rather high permeability, and the permeable capability would be further enhanced with the additive of silk fibroin powder. The flame retardancy (FR) of the coated fabric sample was also achieved by introducing an intumescent FR system. In contrast to the pure AF, the aluminum-coated AF provided higher levels of radiation protection in RPP testing. This was further confirmed by the fact that aluminum-coated AF exhibited comparative high average reflectivities (more than 0.7) in the radiant spectral range of 1547 nm to 2500 nm. Thus, the aluminum-coated AF prepared by functional coating method exhibit great and competitive practicability in thermal protective clothing due to their excellent moisture comfort and radiant thermal protection.  相似文献   

20.
In this paper, aramid fiber (AF)/ethylene-propylene-diene monomer (EPDM) microcellular foams added with different content of AF are prepared by the supercritical foaming method. The effect of the AF content on the rheological behavior, mechanical properties, thermal properties and cellular structure of the AF/EPDM microcellular foams has been systematically studied. The research illustrates that compared with pure EPDM, the AF/EPDM matrix has greater viscosity and modulus, which is conducive to reduce the cell size and increase its density. And the thermal stability of EPDM foams is improved with the addition of aramid fiber. Meanwhile, when the content of AF is added to 1 wt%, the AF/EPDM microcellular foam exhibits a relatively low thermal diffusion coefficient and apparent density with the thermal conductivity to 0.06 W/mK. When the AF is added to 5 wt%, the tensile strength of the AF/EPDM microcellular foam increases to 1.95 MPa, which is improved by 47% compared with that of the pure EPDM foam. Furthermore, when the compressive strain reaches to 50%, the compressive strength of the AF/EPDM microcellular foam is 0.48 MPa, improved by 296% compared with that of the pure EPDM foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号