首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermetallics based on aluminides have long been known for their excellent resistance to high-temperature oxidation. However, for use in structural components the poor ductility at ambient temperatures has always been felt as a stumbling block. Interest in these materials has been revived recently, after achieving some success in improving the ductility at ambient temperatures and creep at elevated temperatures in titanium aluminides. For the iron aluminides, too, similar methodologies have been attempted, namely alloying with elements such as titanium, boron, molybdenum, chromium, silicon and manganese, as well as grain refinement for improving high-temperature creep and room-temperature ductility. Raising the creep resistance close to 600 °C and improving the ambient-temperature ductility to around 6% have been the major immediate aims. Attempts are also being made to improve the high-temperature fatigue and creep properties in these materials, particularly by pushing the stability temperature of ordered D03 upwards. It is now visualized that once the above properties are achieved, the iron aluminides, particularly the types based on Fe3Al, could offer themselves as excellent candidate materials For structural purposes. Their attractiveness also stems to a large extent from their low cost, as they contain only abundantly occurring materials. The present work examines two routes for introducing ductility in the Fe3Al-based materials: one by ternary-Quarternary additions and the other by grain refinement. Structural studies have been made on materials obtained through conventional casting as well as through rapid solidification with minor alloy additions. The results confirm that Fe3Al-based alloys, even when air-melted, are amenable to a high degree of hot working and could be made to display improved ductility at room temperature by a careful control of the chemistry. Rapidly solidified ribbons also show reasonably good bonding during high-temperature compaction. Ordering in these alloys is not suppressed even by rapid solidification.  相似文献   

2.
钛铝金属间化合物合金具有比重轻、比强度高以厦良好的高温力学性能和抗氧化性,被认为是航空航天和军工领域最具有应用前景的高温结构材料。钛铝金属间化合物合金的工程实用化需要先进的连接技术,保证连接件既能够保留母材的性能而且接头具有高的变形和断裂抗力。固态扩散连接不存在熔化缺陷、焊接热裂倾向和组织热影响区等缺点。被认为是连接钛铝金属间化舍物合全有效的方法之一。本文简要地介绍近十多年来国内外对钛铝金属间化合物合金扩散连接研究的状况与进展。  相似文献   

3.
Orthorhombic titanium aluminides represent the youngest class of alloys emerging out of the group of titanium aluminides. These new materials are based on the ordered orthorhombic phase Ti2AlNb, which was discovered for the first time in the late 1980s as a constituent in a Ti3Al‐base alloy. In the 1990s primarily simple ternary Ti–Al–Nb orthorhombic alloys were investigated in countries such as the US, UK, India, France, Japan, and Germany. The drive was mainly provided by jet engine manufacturers and related research labs looking for a damage‐tolerant, high‐temperature, light‐weight material. This follows the aim of further extending the use of lower density titanium‐base materials in temperature regimes, where heavy nickel‐base superalloys are the only alternative today. The present understanding of microstructure–property relationships for orthorhombic titanium aluminides reveals an attractive combination of low and high temperature loading capabilities. These involve high room‐temperature ductility and good formability, high specific elevated temperature tensile and fatigue strength, reasonable room‐temperature fracture toughness and crack growth behavior, good creep, oxidation, and ignition resistance combined with a low thermal expansion coefficient. This article reviews the aspects of composition–microstructure–property relationships in comparison to near‐α titanium, TiAl, and nickel‐base alloys. Special emphasis is also placed on the environmental degradation of the mechanical properties.  相似文献   

4.
Abstract

Orthorhombic titanium aluminides offer the potential to substitute the current titanium alloys in aero engines, gas turbines and automotive turbo-chargers. The advantages are a wider range of thermo mechanical processing possibilities, a higher room temperature ductility, increased high temperature strength and better oxidation as well as titanium fire resistance. Nevertheless, uncertainties with regard to their oxidation behaviour presently impede their use in practical applications. In the present study a very detailed investigation of the oxide scales formed and of the resulting metal subsurface structures after oxidation for up to 1000 h was performed. The results show that both the oxide scale and the subsurface zone develop very complex structures which are responsible whether protective or non-protective behaviour is observed. In principle the oxidation behaviour of the three alloys investigated can be characterised by three types designated as type I, II or III. Each of these types has a characteristic scale structure and a different degree of protection and their occurrence depends on alloy composition and oxidation time. From a technical point of view the interstitial dissolution of oxygen in the metal subsurface zone plays an important role as this process can lead to severe embrittlement. The extent of the IAZ (interstitial affected zone) depends on the oxide scale structure. The paper presents the results from detailed metallographic and microprobe investigations which throw further light on the complex oxidation processes of this group of materials.  相似文献   

5.
Static and cyclic fatigue crack growth behaviour of gamma base titanium aluminides with three different microstructures were investigated. Influence of cyclic test frequency on fatigue crack growth behaviour was also studied at room temperature under a controlled humidity condition. The crack growth behaviour both under static and cyclic loading was strongly influenced by the microstructure. The threshold stress intensity and crack growth behaviour under cyclic loading were much inferior than that under static loading indicating the ‘true-cyclic fatigue’ effect exhibited in gamma base titanium aluminides. No significant effect of test frequency on the crack growth behaviour was observed for the equiaxed and duplex microstructure materials.  相似文献   

6.
Intermetallic titanium aluminides offer an attractive combination of low density and good oxidation and ignition resistance with unique mechanical properties. These involve high strength and elastic stiffness with excellent high temperature retention. Thus, they are one of the few classes of emerging materials that have the potential to be used in demanding high‐temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel‐base superalloys currently in use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. These concerns are addressed in the present paper through global commentary on the physical metallurgy and associated processing technologies of γ‐TiAl‐base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high‐temperature capability.  相似文献   

7.
Synthesis,properties and applications of titanium aluminides   总被引:13,自引:0,他引:13  
Attractive elevated-temperature properties and low density make the titanium aluminides very interesting for both engine and airframe applications, particularly in the aerospace industry. The challenge to the materials scientist is to maintain these characteristics while building-in “forgiveness”. The basic phase diagram and crystal structure of both the Ti3Al and TiAl phases are reviewed, followed by a consideration of chemistry-processing-microstructure-deformation/fracture-mechanical property relationships in monolithic material. Conventional and innovative synthesis methods are presented, including use of hydrogen as a temporary alloying element. Composite concepts as a method to enhance not only “forgiveness” but also elevated-temperature behaviour are discussed. Environmental effects are evaluated prior to consideration of present and projected applications of both monolithic and composite material. It is concluded that while the titanium aluminides in monolithic form can be used now in non-demanding applications, much further research and development is required before this material class can be used in critical applications, especially in composite concepts. On leave from Ben Gurion University of the Negev, Beer Sheva, Israel.  相似文献   

8.
赵斌  李爱菊  张继明 《材料导报》2006,20(Z1):443-445
铁铝金属间化合物由于其优异的力学性能和抗高温氧化性有望成为新一代的高温材料,因此其抗高温硫化腐蚀性能就成为了人们研究的重点课题之一.影响铁铝金属间化合物高温硫化腐蚀的因素主要有:合金成分、腐蚀气氛、温度、预处理工艺等.主要从铁铝金属间化合物的硫化机理、铁铝金属间化合物中铝含量、添加元素、腐蚀气氛、腐蚀温度等方面讨论了铁铝金属间化合物硫化腐蚀的研究进展情况.  相似文献   

9.
Abstract

Titanium aluminide alloys offer considerable promise for use in high temperature applications, such as gas turbines. In this study an extruded Ti–46Al–5Nb–1W alloy has been examined, in terms of its tensile and creep behaviour. A reasonably fine and uniform microstructure was found in this bar product. This gave excellent properties, with tensile strengths up to ~950 MPa at room temperature, along with 1% elongation. These properties were accompanied by a very good creep behaviour, with low primary strains at the lower stresses and very low secondary creep rates. Comparison of the creep properties of this titanium aluminide alloy with other similar compositions and some typical nickel alloys shows that it is significantly superior to first generation titanium aluminides but also nickel alloys, such as IN718 and Udimet 720Li. However, the strain controlled fatigue performance of the titanium aluminide alloy was significantly poorer than these same wrought nickel alloys.  相似文献   

10.
The room temperature hydrogen embrittlement problem in iron aluminides has restricted their use as high temperature structural materials. Previous studies have established that surface films affect hydrogen embrittlement (HE). The effect of surface passive layer on the hydrogen embrittlement behaviour of iron aluminides has been critically reviewed in this presentation. The role of thermomechanical treatments in affecting the mechanical properties has been discussed from a processing-structure-properties correlation view point. The alloy development philosophy to yield ductile iron aluminides has been outlined based on this review. Novel iron aluminide intermetallics that are being currently synthesized and characterized along these lines at IIT Kanpur are finally introduced.  相似文献   

11.
Ti/CFRP (titanium/carbon fibre reinforced polymer) fibre metal laminates (FMLs) are composed of titanium sheets and carbon fibres reinforced PMR (polymerization of monomeric reactants) type polyimide resin. Due to the outstanding heat resistance of the material, it can be used in hypersonic aircraft applications. Fatigue cracks in the metal layer and delamination at metal/fibre interface may occur in long‐term high‐temperature use processes. However, the behaviour of the fatigue failure at high temperatures has not been investigated. A temperature‐dependent equation has not been presented to predict the crack growth behaviour at high temperatures. In this study, to investigate the crack propagation and delamination behaviours, fatigue crack growth rate tests using tension‐tension loads at 25°C, 80°C, 120°C, and 150°C were conducted in accordance with ASTM E647‐15e1. The results indicated that the variation in fatigue crack growth rate could be described by a modified temperature‐dependent Paris equation. Interfacial strength and tensile strength may influence fatigue failure at high temperatures. Hence, these strength values were also obtained to analyse the mechanism of fatigue behaviour. The delamination area increased exponentially with temperature due to the weakening of the Ti/CFRP interface, and delamination was invariably generated on the microcracks of the titanium layers.  相似文献   

12.
张晓化  刘道新 《材料工程》2006,(9):31-35,41
研究了Ti811钛合金表面电火花强化层的界面成分分布、耐磨和微动疲劳性能.研究结果表明:以0Cr18Ni9合金为电极材料在Ti811钛合金表面进行电火花处理可以形成合金层,显著提高了钛合金表面硬度和耐磨性能.但由于合金层硬度高,韧性较低,在微动疲劳(FF)过程中易萌生裂纹并快速扩展进入基体,致使高温下钛合金FF抗力降低.对电火花强化层进行喷丸强化(SP)后处理能够使钛合金FF抗力恢复到裸件的水平.  相似文献   

13.
High-temperature strengths and fracture toughnesses of -phase titanium aluminides were estimated at room and elevated temperatures. The effects of chromium on these mechanical properties were investigated. It was found that addition of chromium substantially improved the room- and high-temperature strength and toughness of the binary titanium aluminides. The transition temperature at which the strength drops was found to increase due to the addition of chromium. The fracture behaviour of binary and chromium-alloyed titanium aluminides were investigated. The fracture mechanism was affected by the addition of chromium. Ductile tearing was observed for the ternary material at 800 °C, and this was delayed for the binary material.  相似文献   

14.
High‐temperature application of titanium alloys in aeroengines is often limited by their insufficient resistance to the aggressive environment. Magnetron‐sputtered Ti–Al based coatings were developed in order to increase the maximum service temperature of conventional titanium alloys from the present 520–600 °C, the temperature limit set by the mechanical capabilities of most advanced alloys. The coatings not only demonstrated excellent oxidation resistance but also demonstrated beneficial effects on mechanical properties. Most importantly, the fatigue behavior of the substrate alloys was not degraded, a major hurdle for coating application on titanium alloys so far. Initial results on Cr‐containing Ti–Al based coatings indicated significant potential for application on titanium aluminides.  相似文献   

15.
The production. characteristics. and commercialization of monolithic and composite titanium aluminides are summanzed with emphasis on use in the demanding aerospace industry. The attractive elevated temperature properties combined with alow density make these materials of great interest, but inherently low "forgiveness", and environmental concerns, must be overcome before widespread use will occur One synthesis method for the production of monolithic titanium aluminides-mechanical alloying- will be discussed in detail  相似文献   

16.
Abstract— It is shown that autofrettage at low temperatures is superior to autofrettage at room temperature in enhancing the fatigue resistance of thick-walled tubes against pulsating internal pressure. The physical reason is based on the well-known temperature dependence of the mechanical behaviour of metals and alloys which generally exhibit an enhancement of both the yield stress and strain hardening behaviour at lower temperatures. As a consequence, significantly larger compressive residual hoop stresses can be introduced during pressurization at low temperatures than at room temperature. Experimental data obtained on thick-walled tubes of the metastable austenitic stainless steel AISI 304 L which were subjected to pulsating internal pressure at room temperature after autofrettage at temperatures between-110°C and room temperature are presented. These data demonstrate convincingly the advantages offered by low-temperature autofrettage in enhancing both the fatigue life in the finite-life region and the fatigue endurance limit in comparison with autofrettage at room temperature. In conclusion, some specific materials requirements for optimum low-temperature autofrettage performance are discussed.  相似文献   

17.
The influence of environment on fatigue crack growth behaviour was investigated both in nearly lamellar and in duplex titanium aluminides, and the hydrogen evolution kinetics was analysed by thermal desorption spectroscopy. The tensile strength of the duplex material decreases in the order of the extent of the water molecule content in the environment: the strength in vacuum is the highest, and decreases in the order of laboratory air and finally in water. In the case of the lamellar material, the fatigue crack growth rate in dry air is higher in the R–C crack plane orientation than that in the L–C crack plane orientation. The crack growth rate becomes higher when the crack grows as the lamellae tear. However, in the case of the duplex material, the crack growth rate in the R–C crack plane orientation is smaller in the low Δ K (Δ K eff ) region. When cathodic charging is applied, the fatigue crack growth rate becomes higher than in dry air, particularly in the higher stress intensity factor range. The hydrogen evolution rate is increased by cathodic charging, with lower temperature peaks and higher ones. The peaks at lower temperatures are correlated with the decomposition of hydrides and de-training of hydrogen from microstructural imperfections such as microvoids. As-received materials also show an evolution peak at a higher temperature, and the evolution rate is almost independent of cathodic charging. In addition, the evolution rate at a high temperature (above 800 °C) is increased by cathodic charging. The hydrogen is considered to have an important role on fatigue crack growth acceleration.  相似文献   

18.
The creep behavior of nickel and titanium aluminides, molybdenum silicides, and their composites was evaluated as a function of stress and temperature to identify the effect of reinforcements on the creep resistance of these compounds. The deformation behavior was analyzed using a power-law creep equation. The experimentally determined activation energies and stress exponents were related to the rate-controlling mechanisms for each system. With reinforcements, there is no improvement in the creep strength in TiAl, some improvement in NiAl, particularly at low stresses, and notable improvement in MoSi and its alloys. Comparative analysis of the creep resistance of aluminides, silicides and the currently used superalloys was also provided. On the basis of the creep resistance, it was concluded that MoSi and its composites have high potential for application at temperatures greater than 1000 °C, and that they are potential competitors to somewhat more brittle ceramic-ceramic composites.  相似文献   

19.
Iron aluminides based on the stoichiometric compositions of Fe3Al and FeAl exhibit poor room temperature ductilities due to hydrogen embrittlement (HE). The presence of surface passive films reduces HE. The reduction is due to the lower rate of hydrogen liberation on the surface of iron aluminides with a passive layer. Theoretical and experimental verification for this idea are provided. The effect of addition of passivity-inducing elements Ti, Zr, V, Nb, Ta, Cr, Mo, W, Si and Ni to Fe3Al on the thermomechanical and electrochemical behaviour has been outlined. The Cr- and Ti-alloyed intermetallics exhibited significant room temperature ductilities. Microstructural studies of the alloyed intermetallics revealed that when the addition of passivity-inducing element results in the precipitation of brittle phases with Fe and Al, they crack during the processing operation. The addition of oxygen-active elements on the embrittlement behaviour is also discussed. The effect of these additions on the potentiodynamic polarization behaviour and high temperature oxidation behaviour is also briefly addressed. Methods to minimize HE by the addition of elements that irreversibly trap hydrogen and that prevent recrystallization have also been discussed.  相似文献   

20.
Engine designers show continued interest in γ‐TiAl based titanium aluminides as light–weight structural materials to be used at moderately elevated temperatures. Although alloy development has made significant progress in terms of mechanical properties and environmental resistance, protective coatings have been developed that help to extend the lifetime of these alloys significantly. The major challenge of coating development is to prevent the formation of fast growing titania. Furthermore, changes of coating chemistries at high temperatures have to be considered in order to avoid rapid degradation of the coatings due to interdiffusion between substrate and coating. The paper describes recent work of the authors on different coatings produced by means of magnetron sputter technique. Thin ceramic Ti‐Al‐Cr‐Y‐N layers tested at 900 °C exhibited poor oxidation resistance. In contrast, intermetallic Ti‐Al‐Cr, Si‐based and aluminum rich Ti‐Al coatings were tested at exposure temperatures up to 950 °C for 1000h resulting in reasonable and partially excellent oxidation behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号