首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
传统的1MΩ跨导放大器在室温下至少有130nV/Hz的输出噪声密度(图1).你可以认为放大器的理论噪声底限就是130nV,因为这是1MΩ电阻自身的噪声密度.  相似文献   

2.
<正> 我们通常见到的运算放大器电路,都是围绕电压输入一电压输出的常规型运放而设计的。而另一种类型的运放也常用于很多音频处理场合中,它采用电压输入→电流输出(跨导)形式工作,增益由外接控制端控制,这种器件称作跨导型运算放大器(OTA),NE5517就是一款这样的集成电路。图1为 OTA 的电路符号和工作时  相似文献   

3.
基于高性能升压转换器的跨导误差放大器   总被引:1,自引:0,他引:1  
在分析峰值电流模式升压转换器原理的基础上,设计了一种结构新颖,高精度高性能跨导误差放大器。提出了将具有动态电流自补偿功能的基准电压电路复用为误差放大器输入级的新方法,克服了传统外接基准电压时误差放大器易受干扰和基准电路设计复杂的缺点,提高了误差信号精度和放大器跨导。设计了输出电阻可调电路,简化了补偿网络设计。电路用0.6μmBiCMOS工艺实现,测试表明:3V输入电压,1.2MHz工作频率下,误差放大器开环电压增益57dB,跨导322μS,输入偏置电流小于50nA;升压转换器输出电压15V,输出纹波小于5mV。  相似文献   

4.
提出了一种应用于流水线型模数转换器(ADC)的增益提高型套筒式全差分跨导放大器(OTA)的设计与分析方法.通过ADC的性能要求推导出OTA的设计指标.该设计中OTA的架构由主运放、增益辅助运放及共模反馈电路3部分子电路组成.设计采用SMIC CMOS 0.18mm工艺平台.该设计方法的实验结果表明:1pF负载下,跨导放大器.的直流增益达到145dB,单位增益带宽超过750MHz,相位裕度达到58°.闭环增益为4时,放大器在20ns内稳定到0.05%的精度.  相似文献   

5.
提出了一种应用于流水线型模数转换器(ADC)的增益提高型套筒式全差分跨导放大器(OTA)的设计与分析方法.通过ADC的性能要求推导出OTA的设计指标.该设计中OTA的架构由主运放、增益辅助运放及共模反馈电路3部分子电路组成.设计采用SMIC CMOS 0.18mm工艺平台.该设计方法的实验结果表明:1pF负载下,跨导放大器.的直流增益达到145dB,单位增益带宽超过750MHz,相位裕度达到58°.闭环增益为4时,放大器在20ns内稳定到0.05%的精度.  相似文献   

6.
光电二极管可分为两类:具高电容(30pF至3000pF)的大面积光电二极管和具相对较低电容(10pF或更小)的较小面积光电二极管。为了获得最佳的信噪比性能,最常见的做法是采用一个跨阻抗放大器(由一个反相运算放大器和一个反馈电阻器组成)来把光电二极管电流转换成电压。在低噪声放大器设计中,大面积光电二极管放大器需要更加关注的是降低运算放大器输入电压噪声,而小面积光电二极管放大器则需要把更多注意力放在降低运算放大器输入电流噪声和寄生电容上。  相似文献   

7.
针对现有的线性跨导运算放大器存在的主要问题设计了一个新的线性OTA,模拟结果表明在输入电压从-0.8V到+0.8V变化时,其线性误差小于±1.5%。  相似文献   

8.
随着低电压系统的广泛应用和对性能要求的提高,要求输入跨导放大器具有宽输入电压动态范围。文章论述了一种较为简单的电路可以实现宽摆幅恒定跨导,包括主跨导放大器、负跨导放大器和求和电路。电路模拟证明这种简单结构具有很高的共模电压输入范围和很低的谐波失真。  相似文献   

9.
提出了一种具有Z端复制输出、跨导可由电压调节的电流差分跨导放大器(MO-VCCDTA)。该电路采用低压高性能电流镜作为电流输入级,降低了消耗的电压余度、输入阻抗与传输误差;利用MOS管的线性组合,实现了可由电压控制跨导的跨导放大级。采用SMIC 0.18um CMOS工艺进行仿真,结果表明:在 0.9V电源电压下,电路的线性输入范围为-100uA-100uA,输入电阻约为10Ω;跨导值可在0.34mS-1.56mS内线性变化,Iz/Ii、Ix/Ii的-3dB带宽分别为131MHz、88MHz;电路总功耗为2.8mW。最后,仅采用两个该模块和两个接地电容得到了电流模式通用二阶滤波器。  相似文献   

10.
CMOS浮地电源交叉耦合运算跨导放大器   总被引:1,自引:0,他引:1  
王萍  赵玉山 《微电子学》1996,26(2):92-96
提出了一种高线性度运算跨导放大器.该电路采用CMOS对管和浮地电源交叉耦合作输入级。对所描述的电路进行了理论分析和计算机模拟.结果表明,在传输特性的非线性误差不大于1%时,电路的差动输入电压范围可达±2.8V。  相似文献   

11.
一种高增益的CMOS差分跨导放大器   总被引:3,自引:0,他引:3  
本文设计了一种可用于∑△A/D转换器的全差分跨导放大器(OTA)。本放大器采用0.6μm工艺实现,其两级间使用共源共栅补偿、并采用了动态共模反馈,其标定动态范围(DR)为82.8dB、开环直流增益为90.9dB,在最坏情况下需要84.3ns以稳定到0.1%的精度。  相似文献   

12.
蒋波 《微电子学》2007,37(1):67-71
介绍了一种低电压、高效率的全差分自适应偏置跨导运算放大器。采用甲乙类的差分结构作为输入级,包含一个本地共模反馈结构(LCMFB),用以提供额外的电流自举,同时也提高其增益带宽积(GBW)和达到近乎理想的电流效率。采用TSMC 0.25μm标准工艺,实现全差分超级自适应运算放大器。为了比较,同时实现了传统的跨导运放和单端输出超级自适应运放。在10μA偏置电流和2 V工作电压下,与传统结构相比,超级自适应运放的转换速率提升了200倍,增益带宽积提高了4倍;而其全差分结构相对单端结构在几乎所有性能提升一倍的同时,还获得很好的共模抑制比和电源抑制比。  相似文献   

13.
采用"最小电流选择技术"和前馈无截止型AB类输出结构,在Chartered 0.35μmCMOS工艺下设计了一种基于片上系统应用的低功耗、高增益恒跨导满幅运算放大器。基于Bsim3v3 Spice模型,用Hspice对整个电路进行仿真,工作电压为3V,直流开环增益125dB,相位裕量74.8°,单位增益带宽33.8MHz,静态功耗0.6mV,压摆率6V/μs,输入级跨导在共模输入电压范围内只有2.34%的变化,运放版图有效面积0.026mm2,与国内外文献介绍的满幅恒跨导电路相比,文中设计的运放有较好的性能。  相似文献   

14.
顾洵  李文渊   《电子器件》2008,31(2):520-524
采用华润上华0.6μm标准CMOS混合信号工艺设计了一种应用于植入式神经信号再生系统的跨导放大器.该放大器采用全差分结构以获得高输出摆幅,利用源反馈技术改善线性度,并设计了共模反馈电路以稳定共模输出电压.该跨导放大器工作在5V的电源电压下,具有0.55 S的跨导增益和100 kHz的3 dB带宽,可以满足系统的需要.  相似文献   

15.
MAZeT GmbH公司针对输出电流的传感器推出新型8通道跨导放大器MT108。该放大器各通道均具有八个放大级,每级可在200kΩ到25.6MΩ间单独设定。信号频率为19kHz时,MT108具有最低光电流20nA。MT108提供输出后的复接MUX以及降功耗模式,工作电压为3.5V。MT108具有卓越的通道同步性、高线性以及低噪声,传感器阵列有裸片形式或紧凑的SSOP20封装形式,以适应传感器阵列/排的应用。  相似文献   

16.
基于UMC的0.6μm BCD 2P2M工艺,探讨了一种高性能Rail-to-Rail恒定跨导CMOS运算放大器.该运算放大器的输入级采用互补差分对,其尾电流由共模输入信号来控制,以此来保证输入级的总跨导在整个共模范围内保持恒定.输出级采用ClassAB类控制电路,并且将其嵌入到求和电路中,以此减少控制电路电流源引起的噪声和失调.为了优化运算放大器低频增益、频率补偿、功耗及谐波失真,求和电路采用了浮动电流源来偏置.该运算放大器采用米勒补偿实现了18MHz的带宽,低频增益约为110dB,Rail-to-Rail引起的跨导变化约为15%,功耗约为10mW.  相似文献   

17.
介绍了Burr-Brown公司生产的宽带运算跨导放大器OPA660的特性和工作原理,分析了它的三种基本组态以及与三极管电路的异同,对使用中的具体问题作了说明,并介绍了二个典型的应用电路。  相似文献   

18.
高文焕 《电视技术》1997,(10):80-83
介绍电流反馈运算放大器包括电路组成,工作原理及有关的应用设计。  相似文献   

19.
提出了一种超宽带伪差分运算跨导放大器.该放大器通过共模前馈和共模反馈方法使得运算跨导放大器单元具有更为简单的电路结构,易于设计验证并能够稳定工作在较高频率.以该放大器作为单元电路,可以实现截止频率到达百兆赫兹的高频连续时间滤波器,并作为中频滤波器用于射频接收机中.  相似文献   

20.
高速BiCMOS运算跨导放大器的设计   总被引:1,自引:0,他引:1  
基于全差分结构提出一种高速BiCMOS运算跨导放大器.该放大器采用两级放大结构实现,可用于8位250 Msps流水线结构模数转换器的采样/保持电路中.电路使用0.35μmBiCMOS工艺实现,由3.3 V单电源供电,经优化设计后,实现了2.1 GHz的单位增益带宽,直流开环增益61 dB,相位裕度50°,功耗16 mw,输出摆幅达到2 V;在2 pF的负载电容下,建立时间小于0.6 ns,转换速率1 200 V/μs.该放大器完全符合设计要求的性能指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号