首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Red phosphor of CaIn2O4:Eu3+, Sm3+ is synthesized by solid state reaction. The 5D0 → 7F2 transition of Eu3+ is dominantly observed in the photoluminescence spectrum, leading to a red emission of the phosphor. The doped Sm3+ is found to be efficient to sensitize the emission of Eu3+ and be effective to extend and strengthen the absorption of near-UV light with wavelength of 400-405 nm, and the energy transfer from Sm3+ to Eu3+ occurs and is discussed. The effect of the molar concentration of Sm3+ on the emission intensities of the phosphor CaIn2O4:Eu3+, Sm3+ is investigated. The temperature quenching effect is also measured from room temperature to 425 K, and the emission intensity of the phosphor at 425 K shows about 85% of that at room temperature. Furthermore, the chromaticity coordinates, the emission intensities and the conversion efficiencies of CaIn2O4:Eu3+, Sm3+ are compared to those of the conventional red phosphor of Y2O2S:Eu3+.  相似文献   

2.
Nano-crystalline GdBO3:Eu3+ was prepared by a hydrothermal method and the effects of some processing variables such as pH, temperature were investigated. The as-synthesized powders were spherical shaped agglomerates of nanoparticles. The luminescent properties were compared with samples synthesized by conventional solid-state reaction method. Both the photoluminescence intensity and chromaticity were improved and a red-shift in the CT band was observed for the hydrothermally synthesized samples. Possible mechanisms of phase formation were investigated and explanations for the changes in optical properties are proposed.  相似文献   

3.
Zn2SiO4:Mn powders were prepared by solid-state reaction using extracted SBA-15 as silica source. The well crystalline willemite Zn2SiO4:Mn can be obtained at 800 °C, much lower than the conventional solid-state reaction temperature and lower than using the calcined SBA-15. This can be attributed to the high reactive activity of the extracted SBA-15 due to its high density silanol groups, large surface areas, and non-crystalline structure. Ultraviolet (UV) and vacuum ultraviolet (VUV) excitation spectra reveal the host lattice absorption band around 162 nm and the charge transfer transition band around 245 nm. The Zn2SiO4:Mn phosphor exhibits a strong green emission around 527 nm. The Zn2SiO4:Mn phosphor with an Mn doping concentration of 0.06, i.e., Zn1.94Mn0.06SiO4, shows the highest relative emission intensity. Upon 147 nm excitation, the luminescence decay time of the green emission of Zn1.94Mn0.06SiO4 around 527 nm is 8.87 ms.  相似文献   

4.
We investigated the luminescence properties of (Ca1−xZnx)Ga2S4:Eu2+ phosphor as a function of Zn2+ and Eu2+ concentrations. The luminescence intensity was markedly enhanced by increasing the mole fraction of Zn2+ at Ca2+ sites. Lacking any Zn2+ ions, CaGa2S4:0.01Eu2+ converted only 18.1% of the absorbed blue light into luminescence. As the Zn2+ concentration increased, the quantum yield increased and reached a maximum of 24.4% at x = 0.1. Furthermore, to fabricate the device, the optimized green-yellow (Ca0.9Zn0.1)Ga2S4:Eu2+ phosphor was coated with MgO. White light was generated by combining the MgO-coated phosphor and the blue emission from a GaN chip.  相似文献   

5.
We report nano-Y2O3:Eu3+ phosphors with particle size of about 50 nm and relatively high photoluminescence (PL) intensity which is close to the standard for application. The influences of the dope amount, the surfactant and the precipitation pH on the PL intensity, the particle size and the dispersion have been studied. It has been found that 4% is the best Eu3+ molar concentration to get the highest PL intensity for both nano- and micro-Y2O3:Eu3+. The addition of butanol as a surfactant inhibits the grain growth and the agglomeration of particles efficiently by reducing the oxygen bridge bonds. As the pH rises, the PL intensity and the particle size increase due to the formation of oxygen bridge bonds.  相似文献   

6.
This work presents the crystal structure and luminescent properties of TlSrLa(AsO4)2. In this phase Tl+ ions are located in large tunnels delimited by chains of alternating (AsO4) and (Sr,La)O8 polyhedra. Thallium atoms are eightfold coordinated with C1 symmetry. Large TlO distances are observed revealing a low stereochemical activity of the 6s2 lone pair. Excitation and emission spectra of Tl+ in TlSrLa(AsO4)2 showed broad bands at lower energy than those observed in previous works. Excitation spectra are decomposed into multiple Gaussian bands and a theoretical analysis is made to explain the number of observed components. Two Gaussian components are revealed for emission spectra.  相似文献   

7.
The luminescent properties of Na3Y1−xSi3O9:xEu3+ (0.05 ≦ x ≦ 0.80) powder crystals were investigated in UV-VUV region. The Eu3+-O2− charge transfer band (CTB) was observed to be located at around 233 nm and the environmental parameter (he) was estimated to be about 0.730. The excitation spectrum monitoring the 613 nm red emission from Eu3+ ions reveals the host absorption band (HAB) to be around 145 nm. The calculated Commission Internationale de l’Eclairage (CIE) chromaticity coordinates indicate the emission by 233 nm rather than by 147 nm excitation has the better color purity and the possible mechanisms have been proposed. The Eu3+-emission showed high quenching concentration due to the isolated YO6 octahedra in the host and the small he for the Eu3+ ions and the optimum concentration was determined to be as high as x = 0.65 and 0.30 with 233 and 147 nm excitation, respectively.  相似文献   

8.
LiSrBO3:M (M = Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors which have been developed for white light-emitting diodes (LEDs) were synthesized by a normal solid-state reaction. The emission and excitation spectra indicate that these phosphors can be effectively excited by near-ultraviolet light-emitting diodes (UVLED), and exhibit satisfactory red, green and blue performances, respectively, nicely fitting in with the widely applied UV chip. Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

9.
10.
Tb3+-doped SrWO4 phosphors with a scheelite structure have been prepared by hydrothermal reaction. X-ray powder diffraction, field-emission scanning electron microscopy, photoluminescence excitation and emission spectra and decay curve were used to characterize the resulting samples. Scanning electron microscopy image showed that the obtained SrWO4:Tb3+ phosphors appeared to be nearly spherical and their sizes ranged from 1 to 3 μm. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under ultraviolet light excitation. Because 12 at.% SWO4:Tb3+ phosphor exhibits intensive green emission under 254 nm excitation in comparison with the commercial green fluorescent lamp phosphor (LaPO4:Ce,Tb), the excellent luminescence properties make it a new promising green phosphor for fluorescent lamps application.  相似文献   

11.
BaTiO3 nanocrystalline powders doped with the Eu3+ ions have been prepared using microwave stimulated hydrothermal method (MSHM). Structure, average grain size and morphology of the BaTiO3:Eu3+ were analyzed by means of the X-ray powder diffraction measurements, Raman spectroscopy and SEM microscopy. The luminescence properties and decay times of the hydrothermal BT:Eu3+ nanocrystalline powders have been investigated as a function of the grain size, dopant concentration, preparation conditions and sintering temperature. It was found that the studied properties are strongly dependent on the grain size of BaTiO3:Eu3+ nano-crystallites.  相似文献   

12.
The phosphors in the system Sr2−xyP2O7:xEu2+,yMn2+ were synthesized by solid-state reactions and their photoluminescence properties were investigated. These phosphors have strong absorption in the near UV region, which is suitable for excitation of ultraviolet light emitting diodes (UVLEDs). The orange-reddish emission of Mn2+ in these phosphors can be used as a red component in the tri-color system and may be enhanced by adjusting the Mn2+/Eu2+ ratio. The energy transfer from Eu2+ to Mn2+ is observed with a transfer efficiency of ∼0.45 and a critical distance of ∼10 Å. The results reveal that Sr2−xyP2O7:xEu2+,yMn2+ phosphors could be used in white light UVLEDs.  相似文献   

13.
One-dimensional Mn2+-doped ZnGa2O4 nanofibers were prepared by a simple and cost-effective electrospinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. SEM results indicated that the as-formed precursor fibers and those annealed at 700 °C are uniform with length of several tens to hundred micrometers, and the diameters of the fibers decrease greatly after being heated at 700 °C. Under ultraviolet excitation (246 nm) and low-voltage electron beams (1–3 kV) excitation, the ZnGa2O4:Mn2+ nanofibers presents the blue emission band of the ZnGa2O4 host lattice and the strong green emission with a peak at 505 nm corresponding to the 4T16A1 transition of Mn2+ ion.  相似文献   

14.
A novel broadband emission phosphor Ca2KMg2V3O12 was first synthesized by solution combustion method. The X-ray diffraction showed that Ca2KMg2V3O12 phase can be obtained at 600-900 °C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca2KMg2V3O12 peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.  相似文献   

15.
Novel green-emitting Gd2 − xTbxTeO6 powder phosphor has been prepared by the oxidation of corresponding rare-earth oxytellurides. The photoluminescence (PL) properties were reported. Five dominant bands centered at 302 nm, 318 nm, 339 nm, 353 nm and 378 nm characterize the excitation spectrum. Under the excitation of 378 nm UV light, the emission spectrum exhibits an intense peak centered at 543-548 nm corresponding to the 5D4 → 7F5 transition of Tb3+. This phosphor can be excited by light with wavelengths of 350-400 nm and therefore can be used as a green phosphor for white lighting devices utilizing near-UV LED as a light source.  相似文献   

16.
The high-resolution luminescent spectrum of divalent samarium excited by 355 nm UV light at 77 K, the VUV excitation spectra, the VUV excited emission spectra and EXAFS at Sm-L3 edge were reported for samarium doped strontium borophosphate, SrBPO5:Sm prepared by solid state reaction in air at high temperature. The high-resolution luminescent spectrum showed that the divalent samarium ions occupied the C lattice sites. The VUV excitation spectra indicated that the sample exhibited absorption bands with the maxima at 129 and 148 nm, respectively. The performance of EXAFS at Sm-L3 absorption edge suggested that the samarium ions were nine-coordinated and the mean distances of bond SmO were 2.38 Å.  相似文献   

17.
A new red emitting phosphor, Ca3(VO4)2:Eu3+; Mn2+, was synthesized by a citric acid sol-gel combustion method and characterized by XRD, TEM and photoluminescence (PL) spectra. The red emission located at about 613 nm was ascribed to 5D0-7F2 transition of Eu3+. And the red luminescence intensity changed with annealing temperature and concentration of Eu3+. The effect of the co-doped Mn2+ was also investigated systematically.  相似文献   

18.
The tunable color emission and persistent luminescence lifetime in phosphor CaGa2S4: Eu2+, Ho3+ were achieved through the introduction of alkaline earth elements Mg, Sr and Ba, in which the Ca was partially replaced. The duration of the persistent luminescence of the material CaGa2S4: Eu2+, Ho3+ was remarkably shortened as Al was introduced, substituting for Ga. The luminescent properties were investigated via thermo-luminescence (TL) glow curves, phosphorescence spectra and decay time curves. These results show that vast changes in trap levels and charge density takes place with introduction of other alkaline earth elements or Al. Trap depths and the trap density were also evaluated by simple methodologies.  相似文献   

19.
Long afterglow phosphors (Ca1−xEux)2MgSi2O7 (0.002 ≤ x ≤ 0.02) were prepared by solid-state reactions under a weak reductive atmosphere. X-ray diffraction pattern, photoluminescence spectra, decay curve, afterglow spectra and thermoluminescence curves were investigated. The phosphors showed two emission peaks when they were excited by 343 nm, due to two types of Eu2+ centers existing in the Ca2MgSi2O7 lattice. However, only one emission peak can be found in their afterglow spectra. Energy transfer between Eu2+ ions in inequivalent sites was found. A possible mechanism was presented and discussed. The afterglow decay time of Ca1.998MgSi2O7:Eu0.002 was nearly 12.5 h which means it was a good long lasting phosphor.  相似文献   

20.
Superfine powder SrLu2O4:Eu3+ was synthesized with a precursor prepared by an EDTA - sol-gel method at relatively low temperature using metal nitrate and EDTA as starting materials. The heat decomposition mechanism of the precursor, formation process of SrLu2O4:Eu3+and the properties of the particles were investigated by thermo-gravimetric (TG) - differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) analyses. The results show that pure SrLu2O4:Eu3+ superfine powder has been produced after the precursor was calcinated at 900 °C for 2 h and has an elliptical shape and an average diameter of 80-100 nm. Upon excitation with 250 nm light, all the SrLu2O4:Eu3+ powders show red and orange emissions due to the 4f-4f transitions of Eu3+ ions. The highest photoluminescence intensity at 610 nm was found at a content of about 6 mol% Eu3+. Splitting of the 5D0-7F1 emission transition revealed that the Eu3+ ions occupied two nonequivalent sites in the crystallite by substituting Lu3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号