首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The subsolidus phase equilibria of the Li2O-Ta2O5-B2O3, K2O-Ta2O5-B2O3 and Li2O-WO3-B2O3 systems have been investigated mainly by means of the powder X-ray diffraction method. Two ternary compounds, KTaB2O6 and K3Ta3B2O12 were confirmed in the system K2O-Ta2O5-B2O3. Crystal structure of compound KTaB2O6 has been refined from X-ray powder diffraction data using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pmn21 (No. 31), with lattice parameters a = 7.3253(4) Å, b = 3.8402(2) Å, c = 9.3040(5) Å, z = 2 and Dcalc = 4.283 g/cm3. The powder second harmonic generation (SHG) coefficients of KTaB2O6 and K3Ta3B2O12 were five times and two times as large as that of KH2PO4 (KDP), respectively.  相似文献   

3.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

4.
Single crystals of K3Rb3Zn4Sn3Se13 were synthesized by solvothermal method. The building block in this structure is a [Zn4Sn3Se16]12− cluster which consists of four ZnSe4 and three SnSe4 tetrahedra connected through corner-sharing of Se atoms. The 3D network contains intersecting channels running parallel to the crystallographic [2 1 1], [1-1-1] and [12-1] directions. The disordered K+ and Rb+ cations reside in these channels. Ion exchange of Cs+ with disordered Rb+/K+ ions in the structure showed a partial replacement of 15.8%. Optical diffuse reflectance experiments were carried out and gave a sharp absorption edge at 2.6 eV.  相似文献   

5.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

6.
The photoluminescent properties of a series of Tb3+-doped Na3GdP2O8 phosphors excitable by vacuum ultraviolet and ultraviolet light are reported. The host related absorption, f-f and f-d transitions of Gd3+ and Tb3+, and charge transfer of O2− → Gd3+ and O2− → Tb3+ are assigned. Under 147 nm light excitation, Na3GdP2O8:Tb3+ phosphors show efficient green emissions with a dominant peak at 545 nm. The optimal sample Na3Gd0.4Tb0.6P2O8 shows a shorter decay time and a comparable brightness when compared with the commercial Zn2SiO4:Mn2+ green phosphor. These results demonstrate that it is a potential candidate for plasma display panels application.  相似文献   

7.
The microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by conventional solid-state route have been studied. The prepared Nd(Co1/2Ti1/2)O3 exhibited a mixture of Co and Ti showing 1:1 order in the B-site. It is found that low-level doping of B2O3 (up to 0.75 wt.%) can significantly improve the density and dielectric properties of Nd(Co1/2Ti1/2)O3 ceramics. Nd(Co1/2Ti1/2)O3 ceramics with additives could be sintered to a theoretical density higher than 98.5% at 1320 °C. Second phases were not observed at the level of 0.25-0.75 wt.% B2O3 addition. The temperature coefficient of resonant frequency (τf) was not significantly affected, while the dielectric constants (?r) and the unloaded quality factors Q were effectively promoted by B2O3 addition. At 1320 °C/4 h, Nd(Co1/2Ti1/2)O3 ceramics with 0.75 wt.% B2O3 addition possesses a dielectric constant (?r) of 27.2, a Q × f value of 153,000 GHz (at 9 GHz) and a temperature coefficient of resonant frequency (τf) of 0 ppm/°C. The B2O3-doped Nd(Co1/2Ti1/2)O3 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

8.
Undoped and doped either by Eu3+ or Tb3+ bismuth borate Ba3BiB9O18 was structurally characterized and analyzed by fluorescence spectroscopy. Belonging to synthetic borate member of the family Ba3XB9O18, layers of planar triangular B3O6 groups connecting with deformed BaO6 hexagons are interleaved by 9-coordinate Ba atoms, and 6-coordinate Bi atoms. Its crystal structure was determined and refined from powder X-ray diffraction data by the Rietveld method and the results showed that Ba3BiB9O18 belongs to space group P63/m with unit cell dimensions of a = 7.1999(2) Å, c = 17.3567(6) Å, and z = 2. Curves of differential thermal analysis and thermogravimetric analysis showed that Ba3BiB9O18 is a congruent melting compound and chemically stable above 728 °C. Ba3Bi1−xEuxB9O18 and Ba3Bi1−xTbxB9O18 form a continuous solid solution from x = 0.01 to x = 0.9. The ultraviolet excited photoluminescence intensity increased with both Eu3+ and Tb3+ concentration in the matrix of Ba3BiB9O18. There may be an interesting correlation between spectroscopic properties and lattice structural features of doped Ba3BiB9O18.  相似文献   

9.
The rare-earth sesquioxides (RE2O3, RE = Lu, Y and Sc) are very promising host crystals for advanced laser diode (LD)-pumped Yb3+-doped solid-state lasers due to unusual combination, almost unique of favourable structural, thermal and spectroscopic properties which are described. In spite of these favourable properties, the bulk single crystal growth technology for the rare-earth sesquioxides has not been established yet. The extremely high melting temperature at around 2400 °C has prevented it. However, we shall show that yttrium oxide crystals (YbxY1−x)2O3, x = 0.0, 0.005, 0.05, 0.08 and 0.15 of cylindrical shape as laser rods with 4.2 mm in diameter and 15-20 mm in length have been grown from rhenium crucibles by the micro-pulling-down method. The crystal quality characterisation of undoped Y2O3 crystal was determined using X-ray rocking curve (XRC) analysis. Yb were homogeneously distributed in Y2O3 host crystal.  相似文献   

10.
We investigated isomorphous substitution of several metal atoms in the Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to understand structure-property correlations. Our investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius (n = 1) + (n = 2) intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric/tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV → MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3−2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3−2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Two new members of this family, Bi2Sr2Nb2RuO12 and Bi2SrNaNb2RuO12 that are analogous to Bi2Sr2Nb2TiO12, possessing tetragonal (I4/mmm) Aurivillius structure have also been synthesized.  相似文献   

11.
Lead borate and lead silicate were added to lower the sintering temperature of a Ni0.5Zn0.5Fe2O4 ferrite prepared from the blend of two types of powders and to homogenize the grain size. 5PbO·SiO2 and 5PbO·B2O3 flux systems were added to lower the sintering temperature and diminish the magnetic loss at high frequencies. The ferrites were studied by bulk density, scanning electron microscopy and impedance analysis. It was found that the addition of PbO markedly accelerated the grain growth, while SiO2 and B2O3 were found to be effective to obstruct the movement of grain boundaries and to minimize the grain size. Doping with PbO in the mixed powders appropriately increased the densification and initial permeability. The ferrite doped with 1% of 5PbO·SiO2 possessed the lowest loss tangent (tgδ) in the range of 5 M-40 MHz and the highest threshold frequency.  相似文献   

12.
For the first time, we have grown ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3-Pb(Fe1/2Nb1/2)O3 (PMN-PT-PFN) from the melt by the simple slow cooling process. The chemical composition of the single crystals PMN-PT-PFN (0.59/0.31/0.10) is near the morphotropic phase boundary (MPB). X-ray diffraction (XRD) was used to study phase structure of the as-grown crystals, energy dispersive X-ray spectrometer (EDS) and electron probe micro-analyzer (EPMA) were employed to confirm the chemical composition and element distribution of the as-grown crystals, respectively. The ferroelectric, dielectric and piezoelectric properties of the as-grown PMN-PT-PFN (0.59/0.31/0.10) single crystal oriented along the (0 0 1) axis were measured, which showed that the remnant polarization (Pr), coercive electric fields (Ec), the Curie temperature (Tc) and the piezoelectric coefficient (d33) were 50.2 μC/cm2, 13.9 kV/cm, 158 °C and about 1800 pC/N, respectively. All the results indicated that the PMN-PT-PFN (0.59/0.31/0.10) single crystals are promising for applying to field of high frequency.  相似文献   

13.
Single crystals of (YbxGd1−x)3Ga5O12 (0.0 ≤ x ≤ 1.0) have been grown by the micro-pulling-down method. Formation of continuous solid solutions with a garnet structure was confirmed. Composition dependence of the lattice constant, thermal diffusivity, specific heat capacity and thermal conductivity was investigated. Assignment of the Yb3+-energy levels in Gd3Ga5O12-host lattice has been performed by using absorption, emission and Raman spectroscopy measurements at both, room temperature and at 12 K.  相似文献   

14.
The temperature dependence of dielectric and piezoelectric properties, electric-field-induced strains of 0.66 Pb(In1/2Nb1/2)O3-0.34 PbTiO3 single crystals, which were grown directly from melt by using the modified Bridgman technique with the allomeric Pb(Mg2/3Nb1/3)O3-PbTiO3 seed crystals, were determined as a function of crystallographic orientation with respect to the prototypic (cubic) axes. Ultrahigh piezoelectric response (d33∼2000 pC/N, k33∼94%) and strain levels up to 0.8%, comparable to rhombohedral (1−x)Pb(Mg2/3Nb1/3)O3-xPbTiO3 and (1−x)Pb(Zn2/3Nb1/3)O3-xPbTiO3 single crystals, were observed for the 〈0 0 1〉-oriented crystals. Strain levels up to 0.47% and piezoelectric constant d33∼1600 pC/N could be achieved being related to an electric-field-induced rhombohedral-orthorhombic phase transition for the 〈1 1 0〉-oriented crystals. In addition, high electromechanical coefficients k33 (∼88%) can be achieved even heating to 110 °C. High TC (∼200 °C), large electromechanical coefficients k33 (∼94%) and low dielectric loss factor (∼1%), along with large strain make the crystals promising candidates for a wide range of electromechanical transducers.  相似文献   

15.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

16.
Xiaofei Han  Zhude Xu 《Thin solid films》2009,517(19):5653-989
Cd1 − xZnxO nanocrystalline thin films with rock-salt structure were obtained through thermal decomposition of Cd1 − xZnxO2 (x = 0, 0.37, 0.57, 1) thin films which were electrodeposited from aqueous solution at room temperature. X-ray diffraction results showed that the Zn ions were incorporated into rock salt-structure of CdO and the crystal lattice parameters decreased with the increase of Zn contents. The bandgaps of the Cd1 − xZnxO thin films were obtained from optical transmission and were 2.40, 2.51, 2.63 and 3.25 eV, respectively.  相似文献   

17.
Pr3+-doped La2(WO4)3 single crystal with dimensions up to Ø 20 mm × 35 mm has been grown by the Czochralski method. The structure of the Pr3+:La2(WO4)3 crystal was determined by the X-ray powder diffraction and the Pr3+ concentration in this crystal was determined. The absorption and fluorescence spectra of Pr3+:La2(WO4)3 crystal were measured at room temperature, and the fluorescence lifetime of main emission multiplets were estimated from the recorded decay curves. The spectral properties related to laser performance of the crystal were evaluated.  相似文献   

18.
Nanosized bismuth titanate was prepared via high-energy ball milling process through mechanically assisted synthesis directly from their oxide mixture of Bi2O3 and TiO2. Only Bi4Ti3O12 phase was formed after 3 h of milling time. The excess of 3 wt% Bi2O3 added in the initial mixture before milling does not improve significantly the formation of Bi4Ti3O12 phase comparing to stoichiometric mixture. The formed phase was amorphized independently of the milling time. The Rietveld analysis was adopted to determine the crystal structure symmetry, amount of amorphous phase, crystallite size and microstrains. With increasing the milling time from 3 to 12 h, the particle size of formed Bi4Ti3O12 did not reduced significantly. That was confirmed by SEM and TEM analysis. The particle size was less than 20 nm and show strong tendency to agglomeration. The electron diffraction pattern indicates that Bi4Ti3O12 crystalline powder is embedded in an amorphous phase of bismuth titanate. Phase composition and atom ratio in BIT ceramics were determined by X-ray diffraction and EDS analysis.  相似文献   

19.
A transport reaction synthesis technique has been used to prepare single crystals of two pyroborate compounds having the formulas Cu2NiO(B2O5) and Cu2MgO(B2O5). The two compounds are isostructural and crystallize in the monoclinic space group P21/c. Cu2NiO(B2O5): a=3.2003(10), b=14.775(3), c=9.097(3), β=93.28(4), V=429.4(2) Å3, Z=4; and Cu2MgO(B2O5): a=3.2401(6), b=14.790(2), c=9.147(2), β=94.88(2), V=436.7(2) Å3, Z=4. The structures of Cu2NiO(B2O5) and Cu2MgO(B2O5) were, respectively, refined from 804 and 1000 independent reflections to the final residuals R1=0.0366, wR2=0.0911 and R1=0.0231, wR2=0.0644. Both compounds exhibit a chevron-like structure built up of ribbons, made of edge-connected copper and nickel-oxygen polyhedra, running along the (1 0 0) direction. These ribbons are connected from one another via oxygen atoms and the cohesion of the three-dimensional network is ensured by [B2O5] entities. Cu in part occupies the position for Ni or Mg, so that the compounds actually are solid solution compounds. Ni or Mg atoms are octahedrally coordinated by oxygen, while the two pure Cu sites show [4] and [4+1] coordination, for Cu(1) and Cu(2), respectively. The ELNES B-K edge spectra for the two compounds support that the borate group present is [B2O5].  相似文献   

20.
Conducting fine powder was obtained in the ZnInO system by combustion of the gel prepared from an aqueous solution of mixed zinc and indium nitrates in the presence of glycine. Glycine worked as a fuel as well as a gelling agent in the combustion under the strong oxidizing power of the nitrates. In spite of the low furnace temperature of 350 °C, the product was (ZnO)3In2O3 which has been obtained above 1260 °C in a solid state reaction of a mixture of ZnO and In2O3. The combustion synthesis led to an aggregated fine powder of hexagonal platelets of about 40 nm in diameter. Its compacted mass showed an electrical resistivity of about 700 Ω cm. The agglomeration was improved by dispersing the fine powder in an acetic acid aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号