首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

2.
The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complex Cole-Cole equation. The activation energy value, obtained from the Arrhenius’ dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.  相似文献   

3.
In this study, bulk ceramics with general formula Bi1−ySryFe(1−y)(1−x)Sc(1−y)xTiyO3 (x = 0-0.2, y = 0.1-0.3 mol%) were prepared by traditional solid-state reaction method. As a comparison, bulk BiFeO3 (BF) was also sintered by rapid sintering method. Their structural, magnetic, dielectric properties were investigated. X-ray diffraction analysis indicated that apart from a small amount of secondary phase detected in BF, all other samples crystallized in pure perovskite structure and maintained original R3c space group. The room temperature M-H curves were obtained. While BF had a coercive magnetic field (Hc) of 150 Oe, Bi1−ySryFe1−yTiyO3 solid solutions had a much larger value (for y = 0.1, 0.2, 0.3, Hc were 4537, 5230 and 3578 Oe, respectively). Sc3+ substitution decreased the Hc values of these solid solutions remarkably, and resulted in soft magnetic properties, as well as a decrease of the dielectric loss. At 1 MHz, the tan δ of Bi0.7Sr0.3Fe0.7(1−x)Sc0.7xTi0.3O3 with x = 0.05, 0.1, 0.15, 0.2 were 0.1545, 0.1078, 0.1046 and 0.1701, respectively.  相似文献   

4.
The microstructures and the microwave dielectric properties of the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system were investigated. In order to achieve a temperature-stable material, CaTiO3 (τf ∼ 800 ppm/°C) was chosen as a τf compensator and added to Mg4Nb2O9 (τf ∼ −70 ppm/°C) to form a two phase system. It was confirmed by the XRD and EDX analysis. By appropriately adjusting the x-value in the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system, near-zero τf value can be achieved. A new microwave dielectric material, 0.5Mg4Nb2O9-0.5CaTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ?r ∼ 24.8, a Q × f value ∼82,000 GHz (measured at 9.1 GHz) and a τf value ∼−0.3 ppm/°C.  相似文献   

5.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

6.
7.
(1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 (0.1 ≤ x ≤ 0.85) composites are prepared by mixing 1150 °C-calcined BaTi4O9 with 1150 °C-calcined Ba(Zn1/3Ta2/3)O3 powders. The crystal structure, microwave dielectric properties and sinterabilites of the (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics have been investigated. X-ray diffraction patterns reveal that BaTi4O9, ordered and disordered Ba(Zn1/3Ta2/3)O3 phases exist independently over the whole compositional range. The sintering temperatures of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics are about 1240 - 1320 °C and obviously lower than those of Ba(Zn1/3Ta2/3)O3 ceramics. The dielectric constants (?r) and the temperature coefficient of resonant frequency (τf) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of BaTi4O9 content. Nevertheless, the bulk densities and the quality values (Q × f) of (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramics increase with the increase of Ba(Zn1/3Ta2/3)O3 content. The results are attributed to the higher density and quality value of Ba(Zn1/3Ta2/3)O3 ceramics, the better grain growth, and the densification of sintered specimens added a small BaTi4O9 content. The (1 − x)Ba(Zn1/3Ta2/3)O3-xBaTi4O9 ceramic with x = 0.1 sintered at 1320 °C exhibits a ?r value of 31.5, a maximum Q × f value of 68500 GHz and a minimum τf value of 4.1 ppm/°C.  相似文献   

8.
Ferroelectric Sr1−xBaxBi2(Nb0.5Ta0.5)2O9 and Sr0.5Ba0.5Bi2(Nb1−yTay)2O9 were synthesized by solid state reaction route. X-ray diffraction studies confirm the formation of single phase layered perovskite solid solutions over a wide range of compositions (x=y=0.0, 0.25, 0.50, 0.75 and 1). The lattice parameters and the Curie temperature (Tc) have been found to have linear dependence on x and y. Transmission electron microscopy (TEM) suggest the lowering of orthorhombic distortion with increasing Ba2+ substitution. Variations in microstructural features as a function of x and y were monitored by scanning electron microscopy (SEM). The dielectric constant at room temperature increases with increase in both x and y. Interestingly Ba2+ substitution on Sr2+ site induces diffused phase transition and diffuseness increases with increasing Ba2+ concentration.  相似文献   

9.
Sr2−xCaxBi4Ti5O18(x = 0, 0.05) powders synthesized by solid state route were uniaxially pressed and sintered at 1225 °C for 2 h. The obtained dense ceramics exhibited crystallographic anisotropy with a dominant c axis parallel to the uniaxial pressing direction which was quantified in terms of the Lotgering factor. Microstructure anisotropy of both compositions (x = 0, 0.05) consisted of plate like grains exhibiting their larger surfaces mostly perpendicular to the uniaxial pressing direction. Dielectric and ferroelectric properties of Sr2−xCaxBi4Ti5O18 ceramics were measured under an electric field (E) applied parallel and perpendicularly to uniaxial pressing direction. The obtained dielectric ?R(T) and polarization (P-E) curves depended strongly on E direction thus denoting a significant effect from microstructure and crystallographic texture. Sr2−xCaxBi4Ti5O18 properties were also significantly affected by Ca content (x): Curie temperature increased from 280 °C (x = 0) to 310 °C (x = 0.05) while ?R and remnant polarization decreased for x = 0.05. The present results are discussed within the framework of the processing and crystal structure-properties relationships of Aurivillius oxides ceramics.  相似文献   

10.
11.
(Bi4.5+xNa0.5−x)(Ti2xNb2−2x)WO15 (BNTNW) compounds were synthesized and their ferroelectric properties were characterized. The X-ray powder diffraction patterns of the compounds revealed that they have a single phase over the whole composition range. The linear variations of the lattice parameters with composition indicate the formation of solid solutions, resulting in a reduction in the orthorhombicity of the compounds. The remnant polarization of the BNTNW decreased from 8.5 to 5.1 μC/cm2 with increasing x, which may be related to the orthorhombicity of the compounds. By using hot forging, an oriented BNTNW compound at x = 0 was obtained. Strong reflections from (0 0 l) were observed for sample // in which the measurement direction is parallel and the orientation factor of such sample was approximately 0.72. A remarkable increase in the remnant polarization (Pr) of the compound was observed for the sample ⊥ in which the direction of applied pressure is perpendicular to the measurement direction; the highest Pr value was 18 μC/cm2.  相似文献   

12.
Ba8Zn(Nb6−xSbx)O24 (x = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.4) ceramics were prepared through the conventional solid-state route. The materials were calcined at 1250 °C and sintered in the range 1400-1425 °C. The structure of the system was analyzed by X-ray diffraction, Fourier transform infrared and Raman spectroscopic methods. The theoretical and experimental densities were calculated. The microstructure of the sintered pellets was analyzed using scanning electron microscopy. The low frequency dielectric properties were studied in the frequency range 50 Hz-2 MHz. The dielectric constant (?r), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Qu) are measured in the microwave frequency region using cavity resonator method. The τf values of the samples reduced considerably with the increase in Sb concentration. The materials have intense emission lines in the visible region. The compositions have good microwave dielectric properties and photoluminescence and hence are suitable for dielectric resonator and ceramic laser applications.  相似文献   

13.
The ferromagnetic metallic oxide, SrRuO3 (TC ∼ 165 K) undergoes structural, magnetic and metal-insulator transitions upon substitution of Cu at the Ru-site. For x = 0.2 in SrRu1−xCuxO3, the structure becomes a tetragonal with the space group I4/mcm and there is a signature of both ferromagnetic (TC = 65 K) and antiferromagnetic (TN = 32 K) ordering due to possible magnetic phase separation. The antiferromagnetism arises due to short range ordering of Cu- and Ru-moments. Jahn-Teller distortion of (Ru,Cu)-O6 octahedra indicates that the copper ions are in 2+ oxidation state with 6t2g3eg electronic configuration. For x ≥ 0.1, narrowing of Ru-4d bandwidth by the substitution of Cu ions results in semiconducting behavior. For x = 0.3, the ac and dc susceptibility measurements indicate a spin glass behavior. The origin of spin glass behavior has been attributed to competing ferromagnetic and antiferromagnetic interactions.  相似文献   

14.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K.  相似文献   

15.
ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) ceramics were prepared by conventional mixed-oxide method combined with a chemical processing. Fine particle powders were prepared by chemical processing to activate the formation of compound and to improve the sinterability. One wt.% of V2O5 and B2O3 with the mole ratios of 3:1 were used to lower the sintering temperature of ceramics. The effect of Sn content on phase structure and dielectric properties were investigated. The results show that the substituting Sn for Ti accelerates the hexagonal phase transition to cubic phase, and an inverse spinel structure Zn2(Ti1−xSnx)O4 solid solution forms. The best dielectric properties obtained at x = 0.12. The ZnO-0.88TiO2-0.12SnO2 ceramics sintered at 900 °C exhibit a good dielectric property: ?r = 29 and tan δ = 9.86 × 10−5. Due to their good dielectric properties, low firing characteristics, ZnO-(1 − x)TiO2-xSnO2 (x = 0.04-0.2) can serve as the promising microwave dielectric capacitor.  相似文献   

16.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

17.
The progress in wireless communications and information access has demanded the use of electronic ceramics exhibiting desired properties. To further our understanding of these properties, compounds in the Ln2Ti2-2xM2xO7 (Ln=Gd, Er; M=Zr, Sn, Si) systems were synthesized by ceramic methods and characterized by powder X-ray diffraction. The ZrO2-doped Gd2Ti2−2xZr2xO7 compounds adopt the pyrochlore structure type and form a complete solid solution. Er2Ti2−2xZr2xO7 forms a pyrochlore solid solution for x<0.1. However, stoichiometric Er2Zr2O7 does not form; instead Er4Zr3O12 forms a with defect fluorite structure. The Sn-doped Ln2Ti2−2xSn2xO7 (Ln=Gd, Er) compounds form complete solid solutions, and the Si compounds adopt the pyrochlore structure up to x=0.05. At ambient temperature, dielectric constants range from 10 to 61 for Er2Ti2−2xZr2xO7 and 16-31 for Gd2Ti2−2xZr2xO7 with low dielectric loss (1×10−3) at 1 GHz.  相似文献   

18.
CexY1−xTiTaO6 ceramics were prepared through the solid-state ceramic route. The materials were sintered in the range 1520-1580 °C. The structure of the system was analyzed by X-ray diffraction and Raman spectroscopic methods. The cell parameters of solid solutions were calculated using the least square method. The microstructure was analyzed using scanning electron microscopy. The dielectric constant (?r), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Qu) are measured in the microwave frequency region using cavity resonator method. The dielectric constant increases with higher concentrations of Ce in the solid solutions. Nearly zero temperature coefficient of resonant frequency (τf) was obtained for Ce0.24Y0.76TiTaO6. The samples are of high quality factor and are useful electronic materials for microwave applications.  相似文献   

19.
Piezoelectric Pb(ZrxTi1−x)O3 (PZT) ceramics with small amount (0.5-2.0 wt.%) of In2O3 are prepared by conventional sintering method. Based on X-ray diffraction analysis, the tetragonality of PZT matrix decreases with In2O3 content, indicating that In2O3 diffuses into PZT matrix. The microstructure of PZT matrix is significantly refined by doping small amounts of In2O3. The grain size reduction and the matrix grain boundary reinforcement are the probable mechanism responsible for the high strength and hardness in the PZT/In2O3 materials. The enhancement in Young’s modulus is attributed to In3+ substitution. The decreased tetragonality with In2O3 addition results in less crack energy absorption by domain switching and, hence, causes the small reduction in fracture toughness.  相似文献   

20.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号