首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Monodispersed thermochromic VO2 particles were fabricated by VO2 coating onto monodispersed SiO2 nanoparticles with the modified chemical solution deposition technique using vanadium isopropoxide solution and monodispersed SiO2 particle suspension solution. The average size of the resultant VO2–SiO2 particle was 57 nm and the coating thickness of the VO2 layer was 6 nm. A thermochromic composite was fabricated using the VO2–SiO2 particles and a poly lactose acid polymer as a transparent matrix, and the transmittance of the composite at a high temperature was 10% less than that at a low temperature.  相似文献   

2.
The SiO2-like layers were obtained by plasma-oxidation of the SiOxCy(− H) films deposited from hexamethylcyclotrisiloxane (HMCTSO) with helium and oxygen. The SiO2-like layers were formed on as-deposited SiOxCy(− H) films within a second by oxidation using the He/O2 atmospheric pressure dielectric barrier discharge (APDBD). The elemental ratio of oxygen to silicon in the layer was increased up to 1.95 which is closed to stoichiometry of SiO2. The elemental composition and surface morphology were studied by means of x-ray photoelectron spectroscopy and atomic force microscopy. Wettability of the oxidized thin films was investigated by water droplet contact angle measurement. The contact angle of SiOxCy(− H) films are decreased from 63° to below 10° within a second by oxidation. Correlation between the elemental composition and the contact angle were discussed. The effects of oxidation duration and discharge generation voltage on the composition and surface morphology of the film were investigated.  相似文献   

3.
The hydrophobic properties of tetramethoxysilane (TMOS)-based silica aerogels by incorporating trimethylethoxysilane (TMES) as a synthesis component, are described. The molar ratio of TMES/TMOS (M) was varied from 0 to 4.0 by keeping the TMOS, methanol (MeOH), water (H2O) and ammonium hydroxide (NH4OH), molar ratio constant at 1:14:4:3.7×10−3. The hydrophobic properties of the aerogels were studied using contact angle measurements, infrared spectroscopy and thermal analysis. The contact angle, θ increased from 100 to 140° for M=0.5 to 4. While the volume shrinkage of the aerogels increased whereas the bulk density decreased with increased M values. The hydrophobic aerogels are thermally stable up to a temperature of 300°C and above this temperature the aerogels become hydrophilic.  相似文献   

4.
The synthesis of SiO2 coated CeO2 nanoparticles by humid solid state reaction at room temperature is described. Transmission electron microscope results show that CeO2 particles were coated with a layer of SiO2. Binding energy of Ce 3d5/2 was shifted from 883.8 to 882.8 eV after coating in the XPS Ce 3d spectra. This confirms the chemical bond formation between SiO32− and Ce4+. Because the surface photovoltage property of CeO2 nanoparticles that were used as core materials in the experiment approaches to that of CeO2 macroparticles, peak P2 (electron transition from O 2p on surface to Ce 4f) disappeared in the surface photovoltage spectrum of CeO2 nanoparticles. Also, the effect of SiO2 on the electron transition from O 2p to Ce 4f results in the lowering of surface photovoltage response intensity of P1 peak (electron transition from O 2p in bulk to Ce 4f).  相似文献   

5.
Ion beam deposited hydrogenated undoped as well as SiOx (SiOx + N2, SiOx + Ar) doped DLC thin films were deposited and evaluated as possible anti-adhesive layers for nanoimprint lithography. Film surface contact angle with water was investigated as a measure of the surface free energy and anti-sticking properties. Contact angle of the DLC films was independent of SiOx doping and ion beam energy. Air-annealing resistance in terms of the contact angle with water of the synthesized diamond like carbon films was investigated. Optical transmittance spectra of the DLC films in UV-VIS range were measured to investigate it as possible anti-sticking layers for UV imprint lithography applications. DLC films with the most promising combination of the UV absorption and anti-sticking properties were revealed. Preliminary imprint tests with uncoated and thin DLC film coated hot imprint stamps were performed.  相似文献   

6.
《Materials Letters》2006,60(13-14):1728-1732
SiO2-coated martensite stainless steel nanoparticles were prepared using wire electrical explosion technique combined with sol–gel technique, and their structural and magnetic properties were studied. The coating silica on stainless steel nanoparticles was based on the use of silane coupling agent 3-mercaptopropyltrimethoxysilane (HS-(CH2)3Si(OCH3)3, MPTS) as a primer to render the stainless steel surface vitreophilic, thus rendering stainless steel surface compatible with silica. The control over the silica coating layer thickness can be achieved by varying the reaction time. For stainless steel nanoparticles, their saturation and remnant magnetizations decreased upon silica coating, and their saturation magnetizations obviously decreased with increasing the thickness of SiO2 coating layer. These stainless steel/silica core–shell nanoparticles can be utilized as precursors for making property-tunable magnetic nanoparticles, thin films, and multilayered core–shell structure nanocomposites.  相似文献   

7.
Variable angle spectrometric ellipsometry at room temperature is used to determine thin film parameters of substrates used in liquid crystal displays. These substrates consist of sequential thin films of polyimide (PI), on indium tin oxide (ITO),on SiO2 deposited on a glass backing approximately 1.1 mm thick. These films were studied by sequentially examining more complex systems of films (SiO2, SiO2-ITO, SiO2-ITO-PI). The SiO2 layer appears to be optically uniform and flat. The ITO film is difficult to characterize. When this surface film's lower surface is SiO2 and upper surface is an air-ITO-interface it is found that including surface roughness and variation of the optical properties with ITO thickness in the model improved the fit; suggesting that both phenomena exist in the ITO films. However, the surface roughness and graded nature of optical properties could be not determinable by ellipsometry when the ITO is coated with a polyimide film. The PI films are ellipsometrically flat and over the wavelength range from 500 to 1400 nm the real refractive index of polyimide films varying in thickness between 25 and 80 nm is well modeled by a two-term Cauchy model with no absorption. The ellipsometric thickness of the ITO layer is the same as the profilometric thickness; however, the ellipsometric thickness of the polyimide layers is roughly 10 nm larger than that obtained from the profilometer. These final observations are consistent with the literature.  相似文献   

8.
A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO2. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency.  相似文献   

9.
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

10.
《Vacuum》2012,86(4):443-447
Transparent conductive ITO/Cu/ITO films were deposited on polyethylene terephthalate (PET) substrates with a SiO2 buffer layer by magnetron sputtering using three cathodes at room temperature. The effect of the SiO2 buffer layer thickness on the electrical and optical properties of ITO/Cu/ITO films was investigated. The ITO/Cu/ITO film deposited on the 40 nm thick SiO2 buffer layer exhibits a sheet resistance of 143Ω/sq and transmittance of 65% at 550 nm wavelength. Highly transparent ITO/Cu/ITO films with a transmittance of 80% and a sheet resistance of 98.7Ω/sq have been obtained by applying −60 V substrate bias.  相似文献   

11.
A novel process for polyethylene terephthalate (PET) surface modification with a silica-like thin layer is proposed. 3-Aminopropyltrimethoxysilane was employed to react with acetone to form dimethyliminopropyltrimethoxysilane (DIPTMS) after aging for 10 days at room temperature. After hydrolysis of alkoxy groups in DIPTMS, dimethylimine-modified silica clusters occurred resulting in an increase of the solution viscosity. Consequently, a dense and homogeneous thin layer was easily dip-coated onto a PET film. After heat treatment at 150 °C, a smooth, flexible and transparent silica-like film (about 70 nm thick) was formed via dehydration and condensation. The surface of the PET dramatically changed from hydrophobic (water contact angle: 70±2°) to hydrophilic (45±3°). As an attempt for application, a dense film of lithium metasilicate (Li2O·2SiO2·nH2O) was successfully prepared by dip coating on the modified PET film, which appeared very low oxygen permeability of about 0.17 cm3/m2 day atm at 23 °C and 85% humidity.  相似文献   

12.
A new kind of superparamagnetic luminescent nanocomposite particles has been synthesized using a modified Stöber method combined with an electrostatic assembly process. Fe3O4 superparamagnetic nanoparticles were coated with uniform silica shell, and then 3-aminopropyltrimethoxysilane was used to terminate the silica surface with amino groups. Finally, negatively charged CdSe quantum dots (QDs) were assembled onto the surface of the amino-terminated SiO2/Fe3O4 nanoparticles through electrostatic interactions. X-ray diffraction (XRD), transmission electron microscopy (TEM), microelectrophoresis, UV-vis absorption and emission spectroscopy and magnetometry were applied to characterize the nanocomposite particles. Dense CdSe QDs were immobilized on the silica surface. The thickness of silica shell was about 35 nm and the particle size of the final products was about 100 nm. The particles exhibited favorable superparamagnetic and photoluminescent properties.  相似文献   

13.
The self-organization of citrate- and acrylate-stabilized gold nanoparticles onto SiO2/hydroxyl-, amino- and nitro-terminated surfaces was investigated as a function of pH. Bare clean Si/SiO2 substrates were used as the SiO2/hydroxyl-terminated surfaces and self-assembled monolayers (SAM) of (3-aminopropyl)trimethoxysilane (APTMS) and 3-(4-nitrophenoxy)-propyltrimethoxysilane (NPPTMS) on Si/SiO2 were employed as the amino- and nitro-terminated surfaces, respectively. All the surfaces were fully characterized by contact angle, atomic force microscopy (AFM), ellipsometry and X-ray photoelectron spectroscopy (XPS). Citrate- and acrylate-stabilized gold nanoparticle stability was also investigated as a function of pH by UV–visible absorption spectroscopy and Z-potentiometry. The gold nanoparticle surface coverage of the substrates was independently estimated by AFM and XPS. The results show that colloid deposition on bare SiO2/OH surfaces and on NPPTMS monolayers is negligible with the exception of acrylate-stabilized gold nanoparticles which were found to be immobilized on nitro-terminated surfaces at pH lower than 3.5. Nevertheless, APTMS monolayers interact strongly with citrate- and acrylate-stabilized gold nanoparticles exhibiting a dependence of the surface coverage from the pH of the colloidal solution.  相似文献   

14.
Epoxy resin (ER) based double-layer composite coatings were prepared with the thickness of 1.2 mm, employing carbonyl iron (CI) and carbon black (CB) as absorbents in the matching layer and absorption layer respectively. Especially, SiO2 was introduced into the matching layer as wave-transmission material to improve the matching impendence. The complex permittivity, complex permeability and absorption properties were investigated in 2–18 GHz. With increasing SiO2 content in the matching layer, the reflection loss (RL) was enhanced in the range 2–18 GHz. When the coating with the optimized SiO2 and CI weight concentration (SiO2:CI:ER) of 2:5:1, the optimal RL got to −17.3 dB and the effective absorption band (RL better than −4 dB) reached 5.7 GHz. In comparison, the minimum RL value was only −5.9 dB and the bandwidth (RL better than −4 dB) was just 4.1 GHz for the SiO2-free composite coating.  相似文献   

15.
Abstract

The present paper deals with the synthesis of hydrophobic aerogels using methyltrimethoxysilane (MTMS) as a hydrophobic agent for transparent window insulation applications. The molar ratio of methanol (solvent), water, and ammonia (catalyst) to the tetramethoxysilane (precursor) MeOH/H2O/NH4OH/TMOS was fixed at 12/4&/3·6×10-3/1 throughout the experiments and the MTMS/TMOS molar ratio M was varied from 0 to 1·55. After gelation, the alcogels were dried supercritically using the high temperature alcohol method. It has been found that lower (<0·26) M values resulted in highly transparent (optical transmission >90% for a 10 mm thick sample at 800 mm wavelength) and negligible volume shrinkage (<2%) but less hydrophobic aerogels whereas higher (>1·03) M values resulted in semitransparent (<20% optical transmission of 800 nm for a 1 cm thick sample) aerogels with >10% volume shrinkage but excellent hydrophobicity. A good compromise of acceptable optical transmittance (~85% optical transmission at 800 nm for a 1 cm thick sample), hydrophobicity with 42 kg m-3 bulk density, and negligible volume shrinkage were obtained at M≈0·70. Hydrophobicity of the aerogels was tested by measuring the contact angle between a water droplet and the aerogel surface. The aerogels were characterised by infrared spectroscopy, bulk density, optical transmittance, and thermal conductivity measurements.  相似文献   

16.
Carbon nanotubes (CNTs) have been widely used as mechanical reinforcement agents of composites. However, their aggregations, weak interfacial interaction with polymer, as well as high electrical conductivity limit their use in some especial applications. In this paper, the silicon oxide (SiO2)-coated (CNT@SiO2) core–shell hybrids with different SiO2 thickness were prepared and employed to reinforce glass fibre-reinforced bismaleimide–triazine (BT) resin (GFRBT) composites. The results indicated the mechanical properties, including tensile strength and Young’s modulus increased with the increase of SiO2 thickness and CNT@SiO2 loading. Such enhanced mechanical properties were mainly attributed to the intrinsically nature of CNTs, homogeneous dispersion of the hybrids, as well as improved interfacial interaction. Meanwhile, the composites remained high electrical insulation (9.63 × 1012 Ω cm) due to the existence of SiO2 layer on CNT surface. This study will guide the design of functionalized CNTs and the construction of high-performance composites.  相似文献   

17.
B. Zheng  M. Song  Z. Xiao  A. Sharma  D. Ila 《Vacuum》2010,84(11):1302-1305
Using electron beam gun PVD system, the thin film with multiple alternative layers of SiO2 + Ag (300 nm)/SiO2 (10-60 nm) was deposited on silica substrate. Annealing test was undertaken for optical absorption analysis. The annealing agglomerated metallic nanoparticles in each layer has enhancement effect for plasmon resonance absorption, these precipitated nanoparticles also cause absorption peak red shift. When the thickness of alternative dielectric layer becomes small enough, there is a coupling phenomenon between the electric dipoles of nanaoparticles in the alternative metallic particle doped layers.  相似文献   

18.
Abstract

Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (Tlum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm?2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.  相似文献   

19.
Pt nanoparticles with an average size of ∼3 nm were successfully immobilized on the surface of SiO2 functionalized with -NH2 and -SH groups through chemical reduction process using polyvinylpyrrolidone as a stabilizer and different reducing agents. The effects of molecular weight of polyvinylpyrrolidone, molar ratio of reducing agent to Pt salt, type of reducing agent on the size and degree of agglomeration of Pt nanoparticles on the SiO2 surface were investigated. The X-ray diffraction and transmission electron micrograph analyses were performed to identify the product phase, size and morphology of immobilized Pt onto SiO2. UV-vis analysis was also conducted to identify the degree of reduction of Pt ions. The Pt-SiO2 nanocomposite prepared from both NH2- and SH-functionalized SiO2 exhibited similar behavior. The number of immobilized Pt nanoparticles and their average size was increased with polyvinylpyrrolidone concentration while the number of immobilized Pt was decreased with its molecular weight.  相似文献   

20.
N. Gao  Y.Y. Yan  X.Y. Chen  D.J. Mee 《Materials Letters》2011,65(19-20):2902-2905
The physics related to superhydrophobic surfaces has been investigated with attention of its potential applications in a variety of industrial and research fields. In the present study, we report a facile method for preparing superhydrophobic surfaces based on micro and nano scaled structures. Composite thin films are formed by using SiO2 nanoparticles and poly(dimethylsiloxane) (PDMS). The static contact angle, advancing contact angle, and receding contact angle are measured to investigate the surfaces' water repelling property. The formed SiO2-PDMS composite films, with different nanoparticle concentrations and sizes, can render the surfaces with superhydrophobicicty, exhibiting large contact angles and small contact angle hysteresis. The composite films are observed by using the Scanning Electron Microscope (SEM). It is demonstrated that the hierarchical structure in micro and nano scale on the surface, plays an important role in prompting the superhydrophobic (water-repelling) properties. Wetting phenomena and related theories are also discussed within the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号