共查询到20条相似文献,搜索用时 0 毫秒
1.
Pierre Pinet 《Materials Research Bulletin》2007,42(5):935-942
The electrical properties of reduced LAMOX-type oxides (La1.9Y0.1Mo2−yWyO9−δ with y = 0, y = 0.5, y = 1.0) were investigated by complex impedance spectroscopy.When reduced at 605 °C in hydrogen, La1.9Y0.1Mo2O9−δ is 10 times and 3 × 105 times more conductive at 605 and 180 °C, respectively, than in air at the same temperatures. The conductivity curve presents a low slope (0.37 eV versus 1.2 eV in air).Besides, the stabilising effect of tungsten against reduction is evidenced, in good agreement with previous reports.In low oxygen partial pressures however (PO2 < 10−18 Pa), the decomposition of the materials is detected, whatever the tungsten content (0 ≤ y ≤ 1 in La1.9Y0.1Mo2−yWyO9−δ). This observation points out the efficiency limit of Mo6+/W6+ substitution to stabilise the structure against reduction, and the limit for an application as IT-SOFC electrolyte.However, given the high electronic conductivity upon reduction, the application of these materials in IT-SOFC electrodes could be considered. 相似文献
2.
The oxygen ion transference numbers of La1.7Bi0.3Mo2O9, La2Mo1.7W0.3O9 and La2Mo1.95V0.05O9 ceramics, determined by modified faradaic efficiency and e.m.f. methods at 973-1173 K, vary in the range 0.995-0.977 in air, decreasing when temperature increases. The activation energies for the ionic and electronic transport are 61-71 kJ/mol and 123-141 kJ/mol, respectively. Reducing oxygen chemical potential leads to increasing n-type electronic contribution to the total conductivity, which remains, however, essentially p(O2)-independent down to oxygen pressures of 10−4-10−3 atm and exhibits reversible drop on further reduction, probably due to phase decomposition. Doping La2Mo2O9 with calcium results in segregation of a CaMoO4-based phase, accompanied with increasing electronic transport. The average thermal expansion coefficients of La2Mo2O9-based materials, calculated from dilatometric data in air, are (14.4-14.8) × 10−6 K−1 at 300-700 K and (16.4-22.5) × 10−6 K−1 at 700-1070 K. 相似文献
3.
Bi2Fe4O9 have been successfully prepared using ethylenediaminetetraacetic (EDTA) acid as a chelating agent and ethylene glycol as an esterification agent. Heating of a mixed solution of EDTA, ethylene glycol, and nitrates of iron and bismuth at 140 °C produced a transparent polymeric resin without any precipitation, which after pyrolysis at 250 °C was converted to a powder precursor for Bi2Fe4O9. The precursors were heated at 400–800 °C in air to obtain Bi2Fe4O9 powder and differential scanning calorimetry (DSC), thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques were used to characterize the precursors and the derived oxide powders. XRD analysis showed that well-crystallized and single-phase Bi2Fe4O9 with orthorhombic symmetry was obtained at 700 °C for 2 h and BiFeO3 and Fe2O3/FeCO3 were intermediate phases before the formation of Bi2Fe4O9. Bi2Fe4O9 powders show weak ferromagnetism at room temperature. 相似文献
4.
Ramaswamy Murugan Werner Weppner Peter Schmid-Beurmann 《Materials Research Bulletin》2008,43(10):2579-2591
Oxides with the nominal chemical compositions Li5La3Sb2O12 and Li6SrLa2Sb2O12 were prepared by solid-state reaction. The structures were refined by the Rietveld method using powder X-ray diffraction data. The synthesis of Li5La3Sb2O12 resulted in the well known garnet-related structure plus 5 wt.% of La2LiSbO6 in the bulk. In contrast to that, Li6SrLa2Sb2O12 could be synthesised in single garnet-related type phase. Lithium ion conductivities of Li5La3Sb2O12 and Li6SrLa2Sb2O12 were studied by the ac impedance method. The grain-boundary contribution to the total (bulk + grain-boundary) resistance is very small and about 5 and 3% for Li5La3Sb2O12 and Li6SrLa2Sb2O12, respectively, at 24 °C and decreases further with increase in temperature. Among the investigated compounds, Li5La3Sb2O12 exhibits the highest total (bulk + grain-boundary) and bulk ionic conductivity of 7.8 × 10−6 and 8.2 × 10−6 S cm−1, respectively, at 24 °C. The structural data indicate that the coupled substitution Li + Sr ⇒ La leads to a closure of the bottle neck like O-O distances of the shared edges of neighbouring Li octahedra and therefore reduces the mobility of Li ions in Li6SrLa2Sb2O12. Scanning electron microscope (SEM) images of the Li6SrLa2Sb2O12 compound revealed well crystallised large homogeneous grains (∼4.8 μm) and the grains were in good contact with the neighbouring grain, which leads to a smaller grain-boundary contribution to the total resistance. 相似文献
5.
H.C. Wang C.L. Wang W.B. Su J. Liu Y. Zhao H. Peng J.L. Zhang M.L. Zhao J.C. Li N. Yin L.M. Mei 《Materials Research Bulletin》2010,45(7):809-20115
Ceramic samples of La0.1Sr0.9−xDyxTiO3 (x = 0.01, 0.03, 0.07, 0.10) have been prepared by the solid-state reaction method. Characterization from the powder X-ray diffraction indicates that their crystal structure changes from cubic to tetragonal phase. Their electrical and thermal transport properties are measured in the temperature range of 300-1100 K. n-Type thermoelectric is obtained with large Seebeck coefficient. The figure of merit is markedly improved, due to relatively lower electrical resistivity and thermal conductivity by Dy doping effect. A much lower electrical resistivity of 0.8 mΩ cm at room temperature is obtained in La0.1Sr0.8Dy0.1TiO3, and with a relatively lower thermal conductivity of 2.5 W/m K at 1075 K. The maximum figure of merit reaches ∼0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3, which is the largest value among n-type oxide thermoelectric ceramics. 相似文献
6.
Magnesium ion containing gel polymer electrolytes based on polyacrylonitrile (PAN) have been synthesized and characterized using ac impedance measurements. The electrolyte composition having the highest room temperature conductivity was found by varying the ratios propylene carbonate/ethylene carbonate (PC/EC) and PAN/Mg(ClO4)2. The corresponding composition was 18 mol% PAN:64 mol% EC:14 mol% PC:4 mol% Mg(ClO4)2. The ac conductivity measurements were carried out from room temperature upto 70 °C with blocking (stainless steel) electrodes. The room temperature conductivity is 3.2×10−3 S cm−1 and the activation energy is 0.24 eV over the temperature range used. The high conductivity and the low activation energy of the material could possibly be due to the liquid electrolyte, Mg(ClO4)2 in EC/PC trapped in a matrix of PAN, as suggested by previous workers. According to dc polarization measurements, the gel electrolyte appears to be predominantly an anionic conductor. 相似文献
7.
The electrical conductivity of SrSn1−xFexO3−δ increases with the Fe content and reaches a value of ∼10−1 S/cm at 25°C at x=1. Compounds with low Fe content exhibit both ionic and electronic conductivity, while the higher Fe content perovskites are mainly electronic conductors with a conductivity independent of the oxygen partial pressure over a wide range from 0.21 to 10−22 atm. 相似文献
8.
A.L. Shaula J.C. Waerenborgh E.V. Tsipis M.V. Patrakeev 《Materials Research Bulletin》2004,39(6):763-773
Increasing iron content in apatite-type La9.83Si4.5Al1.5−yFeyO26+δ (y=0.5-1.5) leads to increasing unit cell volume, fraction of Fe4+, partial oxygen ionic and p-type electronic conductivities, and ceramics sinterability. The oxygen ion transference numbers, determined by Faradaic efficiency (FE) measurements at 973-1223 K in air, are in the range 0.986-0.994. Data on total conductivity and Seebeck coefficient as functions of the oxygen partial pressure, varying in the range 10−2 Pa to 70 kPa, confirm that under oxidizing conditions the ionic conduction in Fe-substituted La9.83(Si,Al)6O26+δ apatites is dominant. Due to stabilization of Fe3+, substantially worse transport properties are observed for A-site stoichiometric La10Si4Fe2O26, having activation energy for ionic conductivity of 107 kJ/mol and electron transference numbers close to 0.03. The correlation between partial ionic and electron-hole conductivities suggests a significant role of Fe4+ formation compensated by extra oxygen incorporation into the vacant sites, which are formed due to Frenkel-type disorder induced by La vacancies. The average thermal expansion coefficients of Fe-doped La10−x(Si,Al)6O26+δ ceramics, calculated from dilatometric data in air, are 8.9×10−6 to 9.9×10−6 K−1 at 300-1250 K. 相似文献
9.
La2−xBaxMo2O9−x/2 (x ≤ 0.18) have been prepared by solid state reaction method. The lattice parameter of La2−xBaxMo2O9−x/2 (x ≤ 0.18) determined by XRD data refinement shows a linear dependence on the dopant Ba content x. For the specimen with a La/Ba molar ratio of 0.18-0.2, additional reflection of secondary phase exists in the XRD pattern, so the value of solubility limit for Ba in La2Mo2O9 is defined in range of 0.18 < x < 0.2. As the replacement degree of La3+ by Ba2+ increases, the bulk conductivity of La2−xBaxMo2O9−x/2 (x ≤ 0.18) decreases initially and then increases, a minimum value at La1.9Ba0.1Mo2O8.95 exists. Hebb-Wagner studies in argon atmosphere, which use an oxide-ion blocking electrode, show that La2−xBaxMo2O9−x/2 (x ≤ 0.18) are predominantly oxide-ion conducting in the temperature ranging from 773 to 1173 K. The average thermal expansion coefficient of La1.84Ba0.16Mo2O8.92 determined by high-temperature XRD was deduced as great as 17.5 × 10−6 K−1 between 298 and 1173 K. 相似文献
10.
Lithium ion was successfully introduced into La1/3NbO3 with an A-site-deficient perovskite-type structure. The crystal structure and transport properties of La1/3LixNbO3 were investigated as a function of Li content (x = 0-0.59). The lattice parameters of La1/3LixNbO3 with an orthorhombic cell were enlarged with increasing Li content for x ≤ 0.3, and the structure was transformed to a pseudo-tetragonal cell for x = 0.44. The temperature dependence of electrical resistivity gradually changed from insulating to metallic with increasing x, and thermoelectric power measurement indicated that the carriers were electrons. In X-ray photoelectron spectra of the incorporated samples, Nb3d4+ peaks appeared in addition to Nb3d5+ peaks, which was consistent with the change of the transport properties. In spite of the success of metallization, no diamagnetic signal indicative of supercondcutivity was observed in La1/3Li0.59NbO3 down to 1.8 K. 相似文献
11.
J. Percival 《Materials Research Bulletin》2008,43(3):765-770
In this paper the synthesis, conductivity, and structure of the garnet-related Li ion conductor, Li5Nd3Sb2O12, are reported. As for the related Li5La3M2O12 (M = Nb, Ta) materials, this phase shows high Li ion conductivity, with a conductivity at 300 °C of 9.2 × 10−3 S cm−1. Structural studies using neutron diffraction indicate a cubic unit cell, space group Ia-3d, with Li located in two partially occupied sites. One of the sites is the traditional garnet structure tetrahedral site, while the other Li site is considerably more distorted. Although the latter is nominally a six coordinate site, a close inspection suggests that the coordination could be described as distorted tetrahedral, with the remaining two bonds being significantly longer (≈2.6 Å). 相似文献
12.
Bo Huang X.F. Ye S.R. Wang H.W. Nie R.Z. Liu T.L. Wen 《Materials Research Bulletin》2007,42(9):1705-1714
A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd0.2Ce0.8O2) within the pores of the anode for a solid oxide fuel cell (SOFC). X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Open circuit voltages (OCVs) increased from 1.027 to 1.078 V, and the maximum power densities increased from 238 to 825 mW/cm2, as the operating temperature of a SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified hydrogen. The coating of nano-sized Gd0.2Ce0.8O2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cell. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Consequently, 2.0 wt.%GDC-coated Ni/ScSZ anode could be used as a novel anode material for a SOFC due to better electrochemical performance. 相似文献
13.
Flower-like Y2O3 nano-/microstructured phosphors without metal activators have successfully been fabricated by an ionic liquid (IL)-assisted method involving temperature (600 °C) annealing. In this paper, the effect of IL concentration on the morphology of the product has been investigated. The IL plays a crucial role in the formation of various morphologies of Y2O3. The structural and morphological features of the obtained samples have been characterized by means of X-ray powder diffraction (XRD) analysis, photoluminescence spectra (PL), Fourier-transform infrared (FT-IR) spectra and X-ray photoelectron spectra (XPS). The photoluminescence spectra of the products exhibit an intense bluish-white emission (ranging from 405 to 430 nm and centered at 418 nm). The luminescent mechanisms have been ascribed to the carbon impurities in the Y2O3 host. The effect of the ILs cation and the counter anions on the Y2O3 morphology of these nanostructures was studied experimentally. It was observed that Y2O3 morphology and PL of these nanostructures were strongly influenced by the type of cation and anion. As the length of the subsidiary chain of cation section of IL (imidaziole ione) reduces, the thickness of the nano-sheets increases. It is expected that the present method may easily be extended to similar nano-/microstructures of other oxide materials. Such investigations are currently underway. 相似文献
14.
The giant dielectric constant material CaCu3Ti4O12 (CCTO) has been synthesized by sol-gel method, for the first time, using nitrate and alkoxide precursor. The electrical properties of CCTO ceramics, showing an enormously large dielectric constant ? ∼ 60,000 (100 Hz at RT), were investigated in the temperature range from 298 to 358 K at 0, 5, 10, 20, and 40 V dc. The phases, microstructures, and impedance properties of final samples were characterized by X-ray diffraction, scanning electron microscopy, and precision impedance analyzer. The dielectric permittivity of CCTO synthesized by sol-gel method is at least three times of magnitude larger than that synthesized by other low-temperature method and solid-state reaction method. Furthermore, the results support the internal barrier layer capacitor (IBLC) model of Schottky barriers at grain boundaries between semiconducting grains. 相似文献
15.
Study of the dielectric properties in the NaNbO3 -KNbO3-In2O3 system using AC impedance spectroscopy
E. Atamanik 《Materials Research Bulletin》2009,44(4):931-6499
We report a comparative study of the dielectric properties of solid-state (ceramic method) synthesized NaNbO3 (NN), Na0.75K0.25NbO3 (K25NN), K0.5Na0.5NbO3 (KNN) and some composite materials containing In2O3 and NN or KNN using an AC impedance method. Powder X-ray diffraction (PXRD) was employed to investigate the phase purity. No significant amount of impurity phase was observed for NN, K25NN, and KNN. Substitutions of 10, 15 and 25 mol% In3+ for Nb5+ in KNN and NN using solid-state reactions at 1150 °C resulted in composite materials. AC impedance studies of NN, KNN and K25NN in the temperature range of 500-800 °C showed a single semicircle (attributed to the bulk property) in the high-frequency range of 103 to 106 Hz. The individual contributions from the bulk and grain boundary on the dielectric properties were resolved and quantified from the impedance data. The calculated dielectric values for NN were consistent with previously reported in the literature. 10% Indium based KNN composite materials had the lowest dielectric loss 0.585 and the dielectric constant of 233 at 100 kHz at the temperature of 650 °C. 相似文献
16.
Transport, specific heat, and magnetic measurements have been performed on three alkali hollandites: KRu4O8, RbRu4O8, and a newly synthesized Cs analog, Cs0.8Li0.2Ru4O8, which was determined to have space group I4/m (#87) and lattice parameters, a = 10.0850(4) and c = 3.12180(20). In contrast to the ruthenium perovskites, which display a wide range of electrical and magnetic behavior, the alkali hollandites are simple paramagnetic metals. 相似文献
17.
Two new diphosphate complexes containing potassium and palladium, K2PdP2O7 and K3.5Pd2.25(P2O7)2, have been synthesized and characterized by single crystal X-ray diffraction. K2PdP2O7 exists with layers formed of linked PdP2O7 polyhedra, between which are found the potassium ions. K3.5Pd2.25(P2O7)2 with a Pd/P2O7 ratio of 1.125:1 crystallizes with tunnels of various sizes in which are found the potassium ions. Conductivity measurements reveal the material to be conducting. 相似文献
18.
The polycrystalline sample of KBa2V5O15 ceramics was prepared by a mixed oxide method at low temperature (i.e., at 560 °C). The formation of the compound was confirmed using an X-ray diffraction technique at room temperature. Scanning electron micrograph of the material showed uniform grain distribution on the surface of the sample. Detailed studies of dielectric properties of the compound as a function of temperature at different frequencies suggest that the compound has a dielectric anomaly of ferroelectric to paraelectric type at 323 °C, and exhibits diffuse phase transition. Electrical properties of the material were analyzed using a complex impedance technique. The Nyquists plot showed the presence of both grain (>103 Hz) and the grain boundary (<103 Hz) effects in the material. Studies of electrical conductivity over a wide temperature range suggest that the compound exhibits the negative temperature coefficient of resistance behavior. The ac conductivity spectrum was found to obey Jonscher's universal power law. 相似文献
19.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1. 相似文献
20.
Low temperature co-fired ceramic (LTCC) is prepared by sintering a glass selected from CaO-SiO2-B2O3 system, and its sintered bodies are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the optimal sintering temperature for this glass-ceramic is 820 °C for 15 min, and the major phases of this material are CaSiO3, CaB2O4 and SiO2. The glass-ceramic possesses excellent dielectric properties: ?r = 6.5, tan δ < 2 × 10−3 at 10 MHz, temperature coefficient of dielectric constant about −51 × 10−6 °C−1 and coefficient of thermal expansion about 8 × 10−6 °C−1 at 20-400 °C. Thus, this material is supposed to be suitable for the tape casting process and be compatible with Ag electrode, which could be used as the LTCC materials for the application in wireless communications. 相似文献