首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline La1−xCdxFeO3 (0.0 ≤ x ≤ 0.3) solid solutions have been synthesized by a single-step solution combustion method at a relatively low temperature of 400 °C. The combustion-synthesized solid solutions were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and magnetic measurements. The crystal structure examined by XRD indicates that the samples were single-phase, and crystallize in an orthorhombic (space group, Pbnm no. 62) structure. The parent and doped compounds showed canted antiferromagnetic behavior associated with an increase in magnetic moment with Cd doping. The changes in magnetic properties of the materials are correlated to the changes in structural features resulting from the Rietveld structural refinement of the materials.  相似文献   

2.
MgxCu3−xV2O6(OH)4·2H2O (x ∼ 1), with similar crystal structure as volborthite Cu3V2O7(OH)2·2H2O, was successfully prepared by a soft chemistry technique. The method consists of mixing magnesium nitrate and copper nitrate with a boiling solution of vanadium oxide (obtained by reacting V2O5 with few mL of 30 vol.% H2O2 followed by addition of distilled water). When ammonium hydroxide NH4OH 10% was added (pH 7.8), a green yellowish precipitate was obtained. Using X-ray powder diffraction data, its crystal structure has been determined by Rietveld refinement. Compared to volborthite, the vanadium coordination changes from tetrahedral VO4 to trigonal bipyramidal VO5, and magnesium replaces copper, preferably, in the less distorted octahedron. At 300 °C, the phase formed is similar to the high pressure (HP) monoclinic Cu3V2O8 phase. However at higher temperature, 600 °C, the phase obtained is different from known Cu3V2O8 phases.  相似文献   

3.
A new MnOOH precursor route has been developed to synthesize single-crystalline nanorods of tetragonal β-MnO2. Uniform γ-MnOOH nanorods were first prepared by reducing KMnO4 with KI under hydrothermal conditions at 120 °C. After calcination of the γ-MnOOH nanorods at 250 °C for 2 h in air, β-MnO2 nanorods retaining the morphologies of γ-MnOOH nanorods were obtained. The temperature, time and heating speed of calcination were found to be important for the morphologies of the β-MnO2 nanorods.  相似文献   

4.
NaTaO3−xNx catalyst has been successfully synthesized from N-doped Ta2O5 precursors by a simple hydrothermal process. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy. Density functional theory calculations suggested that the valence band of the catalysts was composed of the hybrid O 2p and N 2p orbitals, and the visible-light sensitivity is due to the narrowing of the band gap by mixing N 2p and O 2p states. NaTaO3−xNx catalyst could decompose the gaseous formaldehyde under the visible-light irradiation (λ > 400 nm), and its photocatalytic activity depended on N dopant concentration. NaTaO2.943N0.047 showed the highest photoactivity for the formaldehyde photodegradation.  相似文献   

5.
The reaction of yttrium acetate hydrate in 1,2-propanediol at 300 °C yielded a product containing acetate groups and glycol moieties. From this product, Y2O3 was directly crystallized at 400 °C without the formation of a carbonate oxide phase. The thus-obtained Y2O3 samples had a small crystallite size (2.2 nm) and significantly large surface area (280 m2/g). Other nanocrystalline rare earth (Gd-Yb) oxides were also obtained by this method.  相似文献   

6.
The rubidium tungsten bronzes RbxWO3 have been prepared from Rb2CO3, WO3 and W powders using hybrid microwave method. The single hexagonal phase samples can be obtained as actual rubidium content x in the range of 0.21-0.33, and their lattice parameters a and c linearly drop and rise with the increase of rubidium content respectively. For samples with x = 0.14, 0.16, 0.18, the superconducting transition temperature Tc from resistivity measurements does not change with the rubidium content, while Tc from susceptibility measurements shows a decrease from 5.3 K for x = 0.14 to 4.8 K for x = 0.18. The charge density wave (CDW) transition appears in Rb0.21WO3, Rb0.23WO3 and Rb0.25WO3 at about 200-260 K. The CDW transition is most obvious in Rb0.23WO3 which shows the lowest degree of crystallization among the samples.  相似文献   

7.
Polycrystalline Sr2Fe1−xGaxMoO6 (0 ≤ x ≤ 0.6) materials have been synthesized by solid state reaction method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature dependent NPD data shows that the compounds crystallize in the tetragonal symmetry in the space group I4/m. The anti-site (AS) defects concentration increases with Ga doping, giving rise to highly B-site disordered materials. Ga doping at the Fe-site decreases the cell volume. The evolution of bond lengths and the cation oxidation states was determined from the Rietveld refinement data. The saturation magnetization and Curie temperature decreased with the increasing Ga content in the samples. Low temperature neutron diffraction data analysis and magnetization measurements confirm the magnetic interaction as ferrimagnetic in the sample.  相似文献   

8.
A series of mixed orthovanadates with general formula La1−xCexVO4 (0<x<1) were synthesized and characterized using powder XRD and FTIR techniques. The monoclinic phase of LaVO4 was retained for the samples with x≤0.2, while the tetragonal phase of CeVO4 was stabilized in x≥0.5 compositions. On the other hand, the mixed phases of LaVO4 and La0.5Ce0.5VO4 existed for the values of 0.2<x<0.5. The lattice parameters, deduced by indexing of XRD patterns, were found to decrease with the increasing cerium content in the case of both the monoclinic and the tetragonal phases of substituted orthovanadates having single-phase compositions. This trend can be attributed to the presence of Ce in +3 oxidation state and to its smaller ionic size compared to that of La3+. The temperature-programmed reduction/oxidation studies showed that, compared to CeVO4 or LaVO4, the single-phase mixed orthovanadates exhibited a better reproducibility during the repeated cycles of reduction/oxidation.  相似文献   

9.
Pure and W-doped vanadium dioxide nanocrystals have been synthesized by using V2O5 and oxalic acid as precursors via a thermolysis method. The VO2 nanocrystals have a nearly spherical morphology with size ranging from 50 to 100 nm. The metal-insulator transition (MIT) temperature of the nanocrystals decreases with increasing W-doping content. The successive heat-induced fatigue character of the MIT in W-doped VO2 nanocrystals was investigated by DSC analysis together with structural study, and a high stability upon heating–cooling cycles was found with respect to MIT temperature, peak temperature and latent heat of the phase transition.  相似文献   

10.
Gel formation was realized by adding citric acid to a solution of La(NO3)3·5H2O, Ca(NO3)2·4H2O, and Fe(NO3)2·9H2O. Perovskite-type (La1−xCax)FeO3 (0 ≤ x ≤ 0.2) was synthesized by firing the gel at 500 °C in air for 1 h. The crystallite size (D1 2 1) decreased with increasing x, while the specific surface area was 6.8-9.4 m2/g and independent of x. The XPS measurement of the (La1−xCax)FeO3 surface indicated that the Ca2+ ion content increased with increasing x, while the Fe ion content was independent of x. Catalytic activity for CO oxidation increased with increasing x.  相似文献   

11.
Single-crystalline TiO2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.  相似文献   

12.
Perovskite-type oxides, BaMoO3 and SrMoO3, were prepared by reduction of scheelite-type oxides, BaMoO4 and SrMoO4, in H2 flow at 873 K and characterized by XRD, TG, SEM, TPR, NH3-TPD, UV-vis DRS and BET measurement. The catalytic activity of these alkaline-earth molybdenum oxide catalysts was tested for oxidation of 2-propanol with gaseous oxygen under atmospheric pressure. Dehydration to propylene was mainly promoted over the scheelite-type with Mo6+, while oxidative dehydrogenation to acetone was mainly promoted over the perovskite-type with Mo4+, and selectivity to acetone was much higher over BaMoO3 than over SrMoO3. Both perovskite-type oxide catalysts underwent oxidation to some degree during the catalytic reaction, so that they also contained some Mo6+. We concluded that the high selectivity to acetone resulting from oxidative dehydrogenation during 2-propanol conversion is related to the constantly changing oxidation state of the catalyst, resulting in coexistence of Mo6+ octahedra and Mo4+ octahedra on the AMoO3 oxides.  相似文献   

13.
An attempt has been made to synthesize a two-component hybrid material for highly selective catalytic ketonization of n-butanol. The perovskite-type oxide nano-crystallites were synthesized in the presence of carbon black particles by thermal transformation of equimolar mixture of lanthanum and manganese hydroxides into the perovskite-type oxide. The two-component material was tested as a catalyst for unconventional conversion of n-butanol to heptanone-4. The catalyst exhibited very high selectivity and yield towards the products, despite low content of LaMnO3 in the two-component material (less than 10% by weight). The low oxide content led to the reduction of the cost of catalyst fabrication and is compensated by its high dispersion (grains ca. 20-30 nm in diameter) providing high conversion and yield comparable to pure-oxide catalysts. Catalyst fabrication is simple and environment friendly since it does not require organic solvents and excess amount of heavy metals (La and Mn).  相似文献   

14.
This work reports the first synthesis of CuO-CeO2 binary oxides with a plate-like morphology by a solvothermal method. The as-prepared CuO-CeO2 nanoplates calcined at 400 °C were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrum, and tested for catalytic oxidation of dilute benzene in air. Various structural characterizations showed that large amounts of copper species were exposed on the CuO-CeO2 nanoplate surface. The effect of the synthesis conditions on the structure of the product, as well as the growth process of the nanoplates, has been studied and discussed. The CuO-CeO2 nanoplates exhibited an excellent catalytic activity for benzene oxidation despite its relatively low surface area and could catalyze the complete oxidation of benzene at a temperature as low as 240 °C.  相似文献   

15.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

16.
A new lithium cobalt metaphosphate, LiCo(PO3)3, is reported for the first time, which was discovered during the exploratory synthesis in Li-Co-P-O system by solid state reaction. The structure has been refined by powder X-ray Rietveld refinement method (P212121, a = 8.5398(2) Å, b = 8.6326(2) Å and c = 8.3520(2) Å, Z = 4, Rp = 13.6%, Rwp = 19.4%, Rexp = 17.7%, S = 1.11, χ2 = 1.23). It is isostructural with LiM(PO3)3 (M = Fe, Cu). It contains (PO3)1− chains with the Co atoms localized in the octahedral sites, bridging four neighboring chains. The magnetic susceptibility measurement showed a typical paramagnetic behavior of high spin of Co2+, following the Curie-Weiss law in the temperature range of 5-300 K. Unlike the olivine type lithium cobalt phosphate, LiCoPO4, cyclic voltammetry of LiCo(PO3)3 assembled in the coin-type cell showed no electrochemical activity in the voltage region of 1-5 V versus Li/Li+.  相似文献   

17.
(Gd1−x,Eux)2O2SO4 nano-phosphors were synthesized by a novel co-precipitation method from commercially available Gd2O3, Eu2O3, H2SO4 and NaOH starting materials. Composition of the precursor is greatly influenced by the molar ratio of NaOH to (Gd1−x,Eux)2(SO4)3 (the m value), and the optimal m value was found to be 4. Fourier transform infrared spectrum (FT-IR) and thermal analysis show that the precursor (m = 4) can be transformed into pure (Gd1−x,Eux)2O2SO4 nano-phosphor by calcining at 900 °C for 2 h in air. Transmission electron microscope (TEM) observation shows that the Gd2O2SO4 phosphor particles (m = 4) are quasi-spherical in shape and well dispersed, with a mean particle size of about 30-50 nm. Photoluminescence (PL) spectroscopy reveals that the strongest emission peak is located at 617 nm under 271 nm light excitation, which corresponds to the 5D0 → 7F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10 mol% and the concentration quenching mechanism is exchange interaction among the Eu3+ ions. Decay study reveals that the 5D0 → 7F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

18.
Thermal and reduction-oxidation stability of substituted LaMn1−yCoyO3 perovskite-type oxides (0.0 ≤ yCo ≤ 1.0) prepared by the citrate route have been studied by means of surface area, X-ray diffraction, FTIR spectroscopy and magnetic properties. The perovskite orthorhombic structure is found for yCo ≤ 0.5, with the exception of yCo = 0.1, which corresponds better to rhombohedral LaMnO3.15. For yCo > 0.5 the diffraction profiles are quite similar to the cobaltite’s rhombohedral structure. Magnetic iso-field studies (ZFC-FC) reveal that, for yCo ≤ 0.50, the system presents an antiferromagnetic canted-like ordering of the Mn/Co sublattice, in which the presence of divalent Co ion creates Mn3+-Mn4+ pairs that interact ferromagnetically through the oxygen orbital. This interpretation is confirmed by the magnetization loops, in which the magnetic moment increases when substituting Mn for Co. Therefore, the general trend is: for yCo ≤ 0.5, the Co ions are inserted in the manganite structure and for yCo > 0.5, the Mn ions are inserted in cobaltite structure. The enhancement of the ferromagnetic properties and the thermal stability against reduction for yCo = 0.5 is attributed to optimized Co2+-Mn4+ interactions.  相似文献   

19.
The iron nitrate and suitable salt of nickel, cobalt, or magnesium with molar ratio of 2:1 were introduced into the pores of mesoporous silica SBA-15 via two-solvent method. The thermal decomposition of the precursors and the formation of one-dimensional nanostructured spinel ferrite in SBA-15 pores were monitored by XRD, TG-DTA, N2 adsorption-desorption, and TEM. The pure spinel MFe2O4 nanowires obtained through complete removal of the silica template with aqueous NaOH solution were confirmed by TEM and HRTEM. The spinel MFe2O4 nanowires showed increasing normal configuration and exhibited superparamagnetism in comparison with the bulk ones.  相似文献   

20.
Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity were synthesized using titanate nanotubes as raw material by a facile wet chemistry method. The resulting nanotubes were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and UV-vis absorption spectroscopy, etc. The photocatalytic activity of nitrogen-doped TiO2 nanotubes was evaluated by the decomposition of methylene blue under artificial solar light. And it was found that nitrogen-doped TiO2 nanotubes exhibited much higher photocatalytic activity than undoped titanate nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号