首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This work describes the encapsulation of titanium (IV) silsesquioxane into the supercavities of NH4USY ultra stabilized zeolite, after chemical treatment. The modified zeolite was characterized by Fourier transform infrared spectra, Nuclear magnetic resonance, scanning electronic microscopy, X-ray diffraction and thermogravity. This encapsulated titanium (IV) silsesquioxane can adsorb Azure A chloride after treatment with H3PO4, without modifier leaching problems. In an electrochemical study, the cyclic voltammograms of the graphite paste modified electrode, shows two redox couples with formal potential (E0′) −0.1 V and 0.21 V to I and II redox couples respectively (v=700 mV s−1; Britton Robinson buffer (B-R) solution, pH 3) versus SCE ascribed to a monomer and dimmer of azure. This paper shows the use of ultra stabilized zeolite in the electrochemical field as host for molecules with nanometric dimensions.  相似文献   

2.
This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential () = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v=20 mV s−1). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 × 10−4 to 4.0 × 10−3 mol L−1 for the determination of nitrite, with a detection limit of 2.1 × 10−4 mol L−1 and the amperometric sensitivity of 8.04 mA/mol L−1.  相似文献   

3.
The complex of copper (II) with N,N′-bis(3-methoxysalicylidene)-2-aminobenzylamine (H2L) was synthesized and characterized by elemental analysis, magnetic susceptibility, UV–vis. and FT-IR spectroscopy. The results showed that the tetradentate ligand coordinated to the Cu(II) ion through the azomethine nitrogen and phenolic oxygen atoms. The prepared complex [CuL] was electropolymerized on platinum electrode surface in a 0.1 mol dm−3 solution of lithium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.6 V vs. Ag/Ag+. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), conductance measurements, FT-IR and SEM were used to characterize polymer film of Cu(II) complex. The reduction of hydrogen peroxide on poly[CuL] has been investigated mainly in phosphate buffer medium (pH 7.2), between 0 and −0.8 V versus Ag/Ag+ at a scan rate 0.1 V s−1.  相似文献   

4.
Nanostructured Mn-Ni-Co oxide composites (MNCO) were prepared by thermal decomposition of the precursor obtained by chemical co-precipitation of Mn, Ni and Co salts. The chemical composition and morphology were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The electrochemical capacitance of MNCO electrode was examined by cyclic voltammetry, impedance and galvanostatic charge-discharge measurements. The results showed that MNCO electrode exhibited the good electrochemical characteristics. A maximum capacitance value of 1260 F g−1 could be obtained within the potential range of −0.1 to 0.4 V versus saturated calomel electrode (SCE) in 6 mol L−1 KOH electrolyte.  相似文献   

5.
Adsorption of mercury cation on chemically modified clay   总被引:2,自引:0,他引:2  
A montmorillonite clay (M) sample from the Amazon region, Brazil, was intercalated with pyridine (Py), dimethyl sulfoxide (DS) and 3-aminopropyltriethoxysilane (APS). The chemically modified montmorillonite (MP/APS) sample showed modification of its physical-chemical properties including: specific area 41.39 m2 g−1 (M) to 198.45 m2 g−1 (MP/APS). Solid-state 29Si CPMAS/NMR of the silylated montmorillonite samples showed Q2 and Q3 signals as well as T2 and T3 signals. The appearance of T2 and T3 signals can be attributed to the grafting of APS to the interlayer surface silanol groups. The natural and modified clays were used for mercury cation adsorption from aqueous solutions at room temperature and pH 3.0. The energetic effects (ΔintH°, ΔintG° and ΔintS°) caused by mercury cation adsorption were determined through calorimetric titrations.  相似文献   

6.
A. Manzoli 《Thin solid films》2007,515(17):6860-6866
The negative potential sweep of a polycrystalline Au electrode in a solution containing 5 × 10− 4 mol L− 1 SeO2, 0.2 mol L− 1 Zn(ClO4)2 and 0.5 mol L− 1 HClO4 was analyzed at 0.05 V s− 1. The simultaneously collected voltammetric and nanogravimetric responses allowed to analyze the several electrochemical processes occurring in the studied range of potential, finishing with the formation of a thin film of ZnSe. The association of results obtained using both techniques was applied to identify the species involved in the AuO reduction as (AuO)2H2SeO3, which was desorbed during the oxide reduction with a mass variation much larger than that one observed in the supporting electrolyte. Initially, the Se(IV) reduction results in Seads coverage, followed by a further reduction to H2Se, which is a gas and desorbs from the electrode surface. Finally, the Zn(II) reduction inhibits the H2Se formation and generates a thin film of ZnSe, as the final coating. The strong dependence of the nature of reacting compound and the mass as well as the charge variations allowed to postulate a reaction mechanism.  相似文献   

7.
Lithium iron phosphate was prepared by hydrothermal synthesis using LiOH·H2O, FeSO4·7H2O and H3PO4 as raw materials. The effects of pH value of reaction solution on particle morphology and electrochemical property were investigated. The pH value of the reaction solution was adjusted in the range of 2.5-8.8 by dilute sulfuric acid and ammonia water. The samples were characterized by field-emission scanning electronic microscope (FE-SEM), X-ray powder diffraction (XRD), constant-current charge/discharge cycling tests and chemical analysis. The results indicated that the particles exhibited acute angle diamond flake-like morphology at pH = 2.5, and as the pH value increased, the particle became hexagon flake-like, round flake-like and irregular flake-like morphology gradually. The optimal sample synthesized at pH = 6.4 exhibited discharge capacities of 151.8 mAh g−1 at 0.2 C rate and 129.3 mAh g−1 at 3 C rate. It was found that pH value affected the morphologies and properties of the product by means of different crystal growth rates.  相似文献   

8.
Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO2 samples exhibit higher surface area of 130-190 m2 g−1. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO2. When the mass ratio of MnO2 and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO2 calculated from the cyclic voltammetry curves is 453 F g−1, for pure NiO and MnO2 are 209, 330 F g−1 in 6 mol L−1 KOH electrolyte and at scan rate of 10 mV s−1, respectively. The specific capacitance of NiO/MnO2 electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.  相似文献   

9.
Amorphous Si (a-Si) thin film anodes were prepared by pulsed laser deposition (PLD) at room temperature. Structures and properties of the thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements. Galvanostatic charge/discharge tests of half cells using lithium counter electrode were conducted at a constant current density of 100 μA/cm2 in different voltage windows. Cyclic voltammetry (CV) was obtained between 0 and 1.5 V at various scan rates from 0.1 to 2 mV/s. The apparent diffusion coefficient (DLi) calculated from the CV measurements was about ∼10−13 cm2/s. The Si thin film anode was also successfully coupled with LiCoO2 thin film cathode. The a-Si/LiCoO2 full cell showed stable cycle performance between 1 and 4 V.  相似文献   

10.
In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton-Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (ks) as 1.36 s− 1. Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10− 8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results.  相似文献   

11.
A novel CuO electrode material with flower-like nanostructures was fabricated at a low temperature (80 °C) by a simple chemical precipitation method. Scanning electron microscopy (SEM) results showed that CuO with spherical and flower-like structure can be formed under a weak alkali (C6H12N4), and CuO with sheets structure can be obtained under a strong alkali (NaOH). A possible growth mechanism of CuO nanocrystals was discussed. The flower-like CuO electrode exhibited a higher specific capacitance (133.6 Fg−1) and an excellent cycle performance at a high current density of 10 mA/cm2. Specific capacitance of flower-like CuO was 405.3% higher than globular CuO (26.44 Fg−1) at 2 mA/cm2.  相似文献   

12.
Lamellar birnessite-type MnO2 materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO2 with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO2, composed of α-MnO2 and γ-MnO2, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO2 was much higher than that of rod-like MnO2 at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO2. The initial specific capacitance of MnO2 prepared at pH 2.81 was 242.1 F g−1 at 2 mA cm−2 in 2 mol L−1 (NH4)2SO4 aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm−2.  相似文献   

13.
LiFePO4 powders could be successfully prepared from a precursor solution, which was composed of Li(HCOO)·H2O, FeCl2·4H2O and H3PO4 stoichiometrically dissolved in distilled water, by ultrasonic spray pyrolysis at 500 °C followed by heat treatment at sintering temperatures ranging from 500 to 800 °C in N2 + 3% H2 gas atmosphere. Raman spectroscopy revealed that α-Fe2O3 thin layers were formed on the surface of as-prepared LiFePO4 powders during spray pyrolysis, and they disappeared after sintering above 600 °C. The LiFePO4 powders prepared at 500 °C and then sintered at 600 °C exhibited a first discharge capacity of 100 mAh g−1 at a 0.1 C charge-discharge rate. To improve the electrochemical properties of the LiFePO4 powders, LiFePO4/C composite powders with various amounts of citric acid added were prepared by the present method. The LiFePO4/C (1.87 wt.%) composite powders prepared at 500 °C and then sintered at 800 °C exhibited first-discharge capacities of 140 mAh g−1 at 0.1 C and 84 mAh g−1 at 5 C with excellent cycle performance. In this study, the optimum amount of carbon for the LiFePO4/C composite powders was 1.87 wt.%. From the cyclic voltammetry (CV) and AC impedance spectroscopy measurements, the effects of carbon addition on the electrochemical properties of LiFePO4 powders were also discussed.  相似文献   

14.
Fe-contained polyaniline (abbreviated as PANI–Fe) was prepared by chemical oxidation of aniline with ammonium peroxydisulfate oxidant in 0.5 mol dm−3 HCl and an adequate content of FeCl3·6H2O solution in the presence of an applied magnetic field at room temperature. The X-ray photoelectron spectroscopy (XPS) and UV–vis and FTIR spectra suggest that there is an interaction between FeCl3 and PANI chains, but PANI–Fe backbone is essentially identical with that of parent polyaniline. The electron paramagnetic resonance (EPR) spectrum shows that there were unpaired electrons in PANI–Fe synthesized in the presence of an applied magnetic field, the spin density and the conductivity of which are 7.308 × 1020 spins g−1 and 0.891 S cm−1, respectively. The plot of magnetization (M) vs. the applied magnetic field (H) displays that the PANI–Fe possesses soft ferromagnetic behavior at room temperature. The results of cyclic voltammogram show that the PANI–Fe film is of excellent electrochemical activity.  相似文献   

15.
A novel H2O2 biosensor based on horseradish peroxidase (HRP) immobilized into CoFe2O4-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe2O4-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H2O2 determination was from 3 × 10− 2 to 8 mM, with a detection limit of 2 × 10− 3 mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied.  相似文献   

16.
The passivity of titanium was studied using potentiostatic polarization combined with Mott–Schottky analysis in acidic solutions. The oxide layer was characterized as an n-type semiconducting, oxygen deficient oxide (TiO1.993–1.996) with a donor density in the range of 1019–1020 cm−3 depending on electrode potential and electrolyte pH. The calculated thickness for the inner oxide layer was in the range of 1–4 nm, increasing linearly with applied potential and exponentially with electrolyte pH. The potential- and pH-dependence of the inner oxide thickness was interpreted by a modified point defect model for the migration-controlled oxide growth, in which the rate-determining step in the passive film growth processes was assumed to be the donor lattice migration.  相似文献   

17.
We report electrochemical preparation and characterization of poly-brilliant cresyl blue (Poly(BCB))/gold nanoparticles (Au-NPs) modified electrode. The Poly(BCB)/Au-NPs modified electrode has been used as an electrochemical sensor for the detection of hydrogen peroxide (H2O2) at lower potential (− 0.2 V). The Poly(BCB)/Au-NPs film was characterized by scanning electron microscopy, Uv-visible spectroscopy (Uv-vis) and cyclic voltammetry. We have observed that, Au-NPs attached glassy carbon electrode (Au-NPs/GCE) significantly enhanced the polymerization of BCB compared to bare GCE. The Poly(BCB) film was irreversibly attached onto the Au-NPs modified electrode, the resulting hybrid film modified electrode was electrochemically active in the pH range from 2 to 11. Attachment of Poly(BCB)/Au-NPs hybrid film on the electrode surface was confirmed by Uv-vis spectra. In addition, electrocatalytic properties of the Poly(BCB)/Au-NPs/GCE towards reduction of H2O2 have been investigated, and it was found that the sensitivity, reduction potential as well as the corresponding detection limit were improved as compared to the voltammetric response of the Poly(BCB)/GCE and Au-NPs/GCE. Based on this study, a non-enzymatic electrochemical sensor for the determination of H2O2 has been reported. Moreover, analysis of commercial H2O2 samples was performed using the proposed method and satisfactory results were obtained.  相似文献   

18.
Polyaniline electrode (PANI) was formed electrochemically at graphite electrode. Electrochemical polymerization was performed at constant current density of 2.0 mA cm−2 from aqueous solution of 1.0 mol dm−3 HCl with addition of 0.25 mol dm−3 aniline monomer. Electrochemical characterization of the PANI electrode in chloride and chloride/citrate electrolyte was performed using cyclic voltammetry and galvanostatic measurement in order to study the influence of citrate ions on charge/discharge capability and cycling efficiency. It was observed that, for anodic potential 0.32 V, higher electrode capacity of PANI electrode in chloride/citrate electrolyte was obtained, comparing to chloride electrolyte, indicating positive effect of citrate ions on cycling characteristics. On the other hand, for higher anodic potential limit of 0.50 V, faster decrease of the electrode capacity in chloride/citrate electrolyte was observed. It was suggested that influence of both chloride and citrate anions had exhibited influence on electrochemical behavior of PANI electrode in citrate containing electrolyte.  相似文献   

19.
The present paper reports a new catalytic electrolysis method to prepare NiOOH. KMnO4 is proposed as a catalyst to play the role of electron-transfer medium in the electrolysis preparation of NiOOH for the first time. Through the self-redox reaction of KMnO4, the highly efficient electron-transfer process between the electrolyte and the electrode of the spherical Ni(OH)2 is realized, thus resulting in a high electrolytic efficiency and short electrolysis time. The mechanism of catalytic electrolysis is preliminarily discussed. The experimental results show that the electrode prepared with the NiOOH powders by catalytic electrolysis offers a discharge capacity of 267 mAh g−1 at a current density of 120 mA g−1 and exhibits good cycling performance.  相似文献   

20.
Novel chrysanthemum-like hierarchical microstructures of orthorhombic InVO4 were synthesized via a hydrothermal route without assistance of any template or organic additive. The chrysanthemum-like InVO4 microstructures are built up of numerous nanobelts radially aligned around the spherical surface. Based on the structural feature of orthorhombic InVO4 and the key role of the pH value, a probable mechanism of the etching-splitting growth process induced by H+ ions was proposed to explain the formation of InVO4 microstructures. Furthermore, the chrysanthemum-like InVO4 sample shows a high discharge capacity of 608.6 mAh g−1 and acceptable capacity retention when used as an electrode material in lithium ion batteries. The pure orthorhombic phase and unique porous morphology play basic roles in the structural requirement to serve as transport paths for lithium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号