首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP-sensitive potassium (KATP) channels in the pancreatic beta cell membrane mediate insulin release in response to elevation of plasma glucose levels. They are open at rest but close in response to glucose metabolism, producing a depolarization that stimulates Ca2+ influx and exocytosis. Metabolic regulation of KATP channel activity currently is believed to be mediated by changes in the intracellular concentrations of ATP and MgADP, which inhibit and activate the channel, respectively. The beta cell KATP channel is a complex of four Kir6.2 pore-forming subunits and four SUR1 regulatory subunits: Kir6.2 mediates channel inhibition by ATP, whereas the potentiatory action of MgADP involves the nucleotide-binding domains (NBDs) of SUR1. We show here that MgATP (like MgADP) is able to stimulate KATP channel activity, but that this effect normally is masked by the potent inhibitory effect of the nucleotide. Mg2+ caused an apparent reduction in the inhibitory action of ATP on wild-type KATP channels, and MgATP actually activated KATP channels containing a mutation in the Kir6.2 subunit that impairs nucleotide inhibition (R50G). Both of these effects were abolished when mutations were made in the NBDs of SUR1 that are predicted to abolish MgATP binding and/or hydrolysis (D853N, D1505N, K719A, or K1384M). These results suggest that, like MgADP, MgATP stimulates KATP channel activity by interaction with the NBDs of SUR1. Further support for this idea is that the ATP sensitivity of a truncated form of Kir6.2, which shows functional expression in the absence of SUR1, is unaffected by Mg2+.  相似文献   

2.
3.
Adenosine 5'-triphosphate-sensitive potassium (KATP) channels couple metabolic events to membrane electrical activity in a variety of cell types. The cloning and reconstitution of the subunits of these channels demonstrate they are heteromultimers of inwardly rectifying potassium channel subunits (KIR6.x) and sulfonylurea receptors (SUR), members of the ATP-binding cassette (ABC) superfamily. Recent studies indicate that SUR and KIR6.x associate with 1:1 stoichiometry to assemble a large tetrameric channel, (SUR/KIR6.x)4. The KIR6.x subunits form the channel pore, whereas SUR is required for activation and regulation. Two KIR6.x genes and two SUR genes have been identified, and combinations of subunits give rise to KATP channel subtypes found in pancreatic beta-cells, neurons, and cardiac, skeletal, and smooth muscle. Mutations in both the SUR1 and KIR6.2 genes have been shown to cause familial hyperinsulinism, indicating the importance of the pancreatic beta-cell channel in the regulation of insulin secretion. The availability of cloned KATP channel genes opens the way for characterization of this family of ion channels and identification of additional genetic defects.  相似文献   

4.
KATP channels are composed of a small inwardly rectifying K+ channel subunit, either KIR6.1 or KIR6.2, plus a sulfonylurea receptor, SUR1 or SUR2 (A or B), which belong to the ATP-binding cassette superfamily. SUR1/KIR6.2 reconstitute the neuronal/pancreatic beta-cell channel, whereas SUR2A/KIR6.2 and SUR2B/KIR6.1 (or KIR6.2) are proposed to reconstitute the cardiac and the vascular-smooth-muscle-type KATP channels, respectively. We report that potassium channel openers (KCOs) bind to and act through SURs and that binding to SUR1, SUR2A and SUR2B requires ATP. Non-hydrolysable ATP-analogues do not support binding, and Mg2+ or Mn2+ are required. Point mutations in the Walker A motifs or linker regions of both nucleotide-binding folds (NBFs) abolish or weaken [3H]P1075 binding to SUR2B, rendering reconstituted SUR2B/KIR6.2 channels insensitive towards KCOs. The C-terminus of SUR affects KCO affinity with SUR2B approximately SUR1 > SUR2A. KCOs belonging to different structural classes inhibited specific [3H]P1075 binding to SUR2B in a monophasic manner, with the exception of minoxidil sulfate, which induced a biphasic displacement. The affinities of KCO binding to SUR2B were 3.5-8-fold higher than their potencies for activation of SUR2B/KIR6.2 channels. The results establish that SURs are the KCO receptors of KATP channels and suggest that KCO binding requires a conformational change induced by ATP hydrolysis in both NBFs.  相似文献   

5.
Structurally unique among ion channels, ATP-sensitive K+ (KATP) channels are essential in coupling cellular metabolism with membrane excitability, and their activity can be reconstituted by coexpression of an inwardly rectifying K+ channel, Kir6.2, with an ATP-binding cassette protein, SUR1. To determine if constitutive channel subunits form a physical complex, we developed antibodies to specifically label and immunoprecipitate Kir6.2. From a mixture of Kir6.2 and SUR1 in vitro-translated proteins, and from COS cells transfected with both channel subunits, the Kir6.2-specific antibody coimmunoprecipitated 38- and 140-kDa proteins corresponding to Kir6.2 and SUR1, respectively. Since previous reports suggest that the carboxy-truncated Kir6.2 can form a channel independent of SUR, we deleted 114 nucleotides from the carboxy terminus of the Kir6.2 open reading frame (Kir6.2deltaC37). Kir6.2deltaC37 still coimmunoprecipitated with SUR1, suggesting that the distal carboxy terminus of Kir6.2 is unnecessary for subunit association. Confocal microscopic images of COS cells transfected with Kir6.2 or Kir6.2deltaC37 and labeled with fluorescent antibodies revealed unique honeycomb patterns unlike the diffuse immunostaining observed when cells were cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1. Membrane patches excised from COS cells cotransfected with Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 exhibited single-channel activity characteristic of pancreatic KATP channels. Kir6.2deltaC37 alone formed functional channels with single-channel conductance and intraburst kinetic properties similar to those of Kir6.2-SUR1 or Kir6.2deltaC37-SUR1 but with reduced burst duration. This study provides direct evidence that an inwardly rectifying K+ channel and an ATP-binding cassette protein physically associate, which affects the cellular distribution and kinetic behavior of a KATP channel.  相似文献   

6.
1. The classical ATP sensitive K+ (K(ATP)) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil. 2. In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac type (SUR2A/Kir6.2) and vascular smooth muscle type (SUR2B/Kir6.2) of the K(ATP) channels heterologously expressed in HEK293T cells, a human embryonic kidney cell line, by using the patch-clamp method. 3. In the cell-attached recordings (145 mM K+ in the pipette), pinacidil and nicorandil activated a weakly inwardly-rectifying, glibenclamide-sensitive 80 pS K+ channel in both the transfected cells. 4. In the whole-cell configuration, pinacidil showed a similar potency in activating the SUR2B/Kir6.2 and SUR2A/Kir6.2 channels (EC50 of approximately 2 and approximately 10 microM, respectively). On the other hand, nicorandil activated the SUR2B/Kir6.2 channel > 100 times more potently than the SUR2A/Kir6.2 (EC50 of approximately 10 microM and > 500 microM, respectively). 5. Thus, nicorandil, but not pinacidil, preferentially activates the K(ATP) channels containing SUR2B. Because SUR2A and SUR2B are diverse only in 42 amino acids at their C-terminal ends, it is strongly suggested that this short part of SUR2B may play a critical role in the action of nicorandil on the vascular type classical K(ATP) channel.  相似文献   

7.
KATP channels are unique in requiring two distinct subunits (Kir6.2, a potassium channel subunit) and SUR1 (an ABC protein) for generation of functional channels. To examine the cellular trafficking of KATP channel subunits, green fluorescent protein (GFP) was tagged to the cytoplasmic N or C terminus of SUR1 and Kir6. 2 subunits and to the C terminus of a dimeric fusion between SUR1 and Kir6.2 (SUR1-Kir6.2). All tagged constructs generated functional channels with essentially normal properties when coexpressed with the relevant other subunit. GFP-tagged Kir6.2 (Kir6.2-GFP) showed perinuclear and plasma membrane fluorescence patterns when expressed alone or with SUR1, and a very similar pattern was observed when channel-forming SUR1-Kir6.2-GFP was expressed on its own. In contrast, whereas SUR1 (SUR1-GFP) also showed a perinuclear and plasma membrane fluorescence pattern when expressed alone, an apparently cytoplasmic fluorescence was observed when coexpressed with Kir6.2 subunits. The results indicate that Kir6.2 subunits traffic to the plasma membrane in the presence or absence of SUR1, in contradiction to the hypothesis that homomeric Kir6.2 channels are not observed because SUR1 is required as a chaperone to guide Kir6.2 subunits through the secretory pathway.  相似文献   

8.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

9.
Cardiac ATP-sensitive K+ (KATP) channels (SUR2A plus Kir6.2) couple the metabolic state of the myocyte to its electrical activity via a mechanism that is not well understood. Recent pharmacological evidence suggests that KATP channels may mediate ischemic preconditioning. However, there is no potent pharmaceutical agent that specifically blocks the sarcolemmal KATP channel without significant effects on other cellular proteins. As a molecular tool, the GFG sequence in the H5 loop of the murine Kir6.2 channel was mutated to AFA. This mutated channel subunit (6.2AFA) suppressed wild-type Kir6.2 (6.2WT) channel current in a dominant-negative manner: when co-expressed with SUR2A and 6.2WT, whole-cell KATP current recorded from HEK cells was greatly attenuated. The 6.2AFA subunit also co-assembled with endogenous subunits in both smooth-muscle-derived A10 cells and rat neonatal ventricular myocytes, resulting in a significant reduction of current compared with that recorded from non-transfected or mock-transfected cells (<15% of control for both cell types). This study shows that mutation of GFG-->AFA in the putative pore-forming region of Kir6.2 acts in a dominant-negative manner to suppress current in heterologous systems and in native cells.  相似文献   

10.
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

11.
Unique ATP-inhibitable K+ channels (KATP) in the kidney determine the rate of urinary K+ excretion and play an essential role in extracellular K+ balance. Here, we demonstrate that functionally similar low sulfonylurea affinity KATP channels are formed by two heterologous molecules, products of Kir1.1a and cystic fibrosis transmembrane conductance regulator (CFTR) genes. Co-injection of CFTR and Kir1.1a cRNA into Xenopus oocytes lead to the expression of K+ selective channels that retained the high open probability behavior of Kir1.1a but acquired sulfonylurea sensitivity and ATP-dependent gating properties. Similar to the KATP channels in the kidney but different from KATP channels in excitable tissues, the Kir1.1a/CFTR channel was inhibited by glibenclamide with micromolar affinity. Since the expression of Kir1.1a and CFTR overlap at sites in the kidney where the low sulfonylurea affinity KATP are expressed, our study offers evidence that these native KATP channels are comprised of Kir1.1a and CFTR. The implication that Kir subunits can interact with ABC proteins beyond the subfamily of sulfonylurea receptors provides an intriguing explanation for functional diversity in KATP channels.  相似文献   

12.
Possible heteromultimer formation between Kv- and Kir-type K+ channels was investigated, in connection with the known functional diversity of K+ channels in vivo. Voltage-clamp experiments were performed on Xenopus oocytes, either injected with concatenated Kir2.1-Kv1.1 mRNA, or co-injected with Kv1.1 and Kir2.1 mRNA. K+ currents could be approximated by the algebraic sum of the 2 K+ current types alone. The tandem construct did not show functional expression, although it could be detected by Western blotting. We conclude that Kv1.1 and Kir2.1 alpha-subunit proteins fail to assemble and do not contribute functional diversity to K+ channels.  相似文献   

13.
The classical type of KATP channel is an octameric (4:4) complex of two structurally unrelated subunits, Kir6.2 and SUR. The former serves as an ATP-inhibitable pore, while SUR is a regulatory subunit endowing sensitivity to sulphonylurea and K+ channel opener drugs, and the potentiatory action of MgADP. Both subunits are required to form a functional channel.  相似文献   

14.
Sulfonylureas stimulate insulin secretion from pancreatic beta-cells by closing ATP-sensitive K+ (K(ATP)). The beta-cell and cardiac muscle K(ATP) channels have recently been cloned and shown to possess a common pore-forming subunit (Kir6.2) but different sulfonylurea receptor subunits (SUR1 and SUR2A, respectively). We examined the mechanism underlying the tissue specificity of the sulfonylureas tolbutamide and glibenclamide, and the benzamido-derivative meglitinide, using cloned beta-cell (Kir6.2/SUR1) and cardiac (Kir6.2/SUR2A) K(ATP) channels expressed in Xenopus oocytes. Tolbutamide inhibited Kir6.2/SUR1 (Ki approximately 5 micromol/l), but not Kir6.2/SUR2A, currents with high affinity. Meglitinide produced high-affinity inhibition of both Kir6.2/SUR1 and Kir6.2/SUR2A currents (Kis approximately 0.3 micromol/l and approximately 0.5 micromol/l, respectively). Glibenclamide also blocked Kir6.2/SUR1 and Kir6.2/SUR2A currents with high affinity (Kis approximately 4 nmol/l and approximately 27 nmol/l, respectively); however, only for cardiac-type K(ATP) channels was this block reversible. Physiological concentrations of MgADP (100 micromol/l) enhanced glibenclamide inhibition of Kir6.2/SUR1 currents but reduced that of Kir6.2/SUR2A currents. The results suggest that SUR1 may possess separate high-affinity binding sites for sulfonylurea and benzamido groups. SUR2A, however, either does not possess a binding site for the sulfonylurea group or is unable to translate the binding at this site into channel inhibition. Although MgADP reduces the inhibitory effect of glibenclamide on cardiac-type K(ATP) channels, drugs that bind to the common benzamido site have the potential to cause side effects on the heart.  相似文献   

15.
ATP-sensitive K+ (KATP) channels regulate many cellular functions by linking cell metabolism to membrane potential. We have generated KATP channel-deficient mice by genetic disruption of Kir6.2, which forms the K+ ion-selective pore of the channel. The homozygous mice (Kir6.2(-/-)) lack KATP channel activity. Although the resting membrane potential and basal intracellular calcium concentrations ([Ca2+]i) of pancreatic beta cells in Kir6.2(-/-) are significantly higher than those in control mice (Kir6.2(+/+)), neither glucose at high concentrations nor the sulfonylurea tolbutamide elicits a rise in [Ca2+]i, and no significant insulin secretion in response to either glucose or tolbutamide is found in Kir6.2(-/-), as assessed by perifusion and batch incubation of pancreatic islets. Despite the defect in glucose-induced insulin secretion, Kir6.2(-/-) show only mild impairment in glucose tolerance. The glucose-lowering effect of insulin, as assessed by an insulin tolerance test, is increased significantly in Kir6.2(-/-), which could protect Kir6.2(-/-) from developing hyperglycemia. Our data indicate that the KATP channel in pancreatic beta cells is a key regulator of both glucose- and sulfonylurea-induced insulin secretion and suggest also that the KATP channel in skeletal muscle might be involved in insulin action.  相似文献   

16.
The class III antiarrhythmic drug clofilium is known to block diverse delayed rectifier K+ channels at micromolar concentrations. In the present study we investigated the potency of clofilium and its tertiary analog LY97241 to inhibit K+ channels, encoded by the human ether-a-go-go related gene (HERG). Clofilium blocked HERG channels in a voltage-dependent fashion with an IC50 of 250 nM and 150 nM at 0 and +40 mV, respectively. LY97241 was almost 10-fold more potent (IC50 of 19 nM at +40 mV). Other cloned K+ channels which are also expressed in cardiac tissue, Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv4.2, Kir2.1, or I(Ks), were not affected by 100-fold higher concentrations. Block of HERG channels by LY97241 was voltage dependent and the rate of HERG inactivation was increased by LY97241. A rise of [K+]0 decreased both, rate of HERG inactivation and LY97241 affinity. The HERG S631A and S620T mutant channels which have a strongly reduced degree of inactivation were 7-fold and 33-fold less sensitive to LY97241 blockade, indicating that LY97241 binding is affected by HERG channel inactivation. In summary, the antiarrhythmic action of clofilium and its analog LY97241 appears to be caused by their potent, but distinct ability for blocking HERG channels.  相似文献   

17.
1. The effects of imidazopyrazine derivative, SCA40, on the activity of single large conductance, Ca(2+)-activated K+ (BKCa) channels in inside-out and outside-out patches from bovine tracheal smooth muscle (BTSM) cells in culture have been compared with those of two established BKCa channel openers, NS 004 and NS 1619. 2. The presence of BKCa channels on inside-out patches of BTSM membranes was confirmed by the single channel conductance (240 pS), selectivity for K+, dependence of channel activity on [Ca2+]i, and sensitivity to the selective BKCa channel blocker, iberiotoxin. 3. NS 004 and ND 1619 (3-30 microM) induced concentration-related increases in open state probability of BKCa channels when applied to either inside-out or outside-out BTSM patches, thus confirming that these compounds are activators of the BKCa channel in this preparation. 4. SCA40 (0.1-10 microM) had no effect on the activity of BKCa channels when applied to either inside-out or outside-out patches which subsequently responded to the application of NS 004 (10-20 microM). 5. It is concluded that SCA40 does not have a direct effect on BKCa channel activity in BTSM patches and that the previously reported relaxant action of SCA40 on tracheal smooth muscle is unlikely to be mediated by this mechanism.  相似文献   

18.
Schwann cells (SCs) are responsible for myelination of nerve fibers in the peripheral nervous system. Voltage-dependent K+ currents, including inactivating A-type (KA), delayed-rectifier (KD), and inward-rectifier (KIR) K+ channels, constitute the main conductances found in SCs. Physiological studies have shown that KD channels may play an important role in SC proliferation and that they are downregulated in the soma as proliferation ceases and myelination proceeds. Recent studies have begun to address the molecular identity of K+ channels in SCs. Here, we show that a large repertoire of K+ channel alpha subunits of the Shaker (Kv1.1, Kv1.2, Kv1.4, and Kv1.5), Shab (Kv2.1), and Shaw (Kv3.1b and Kv3.2) families is expressed in mouse SCs and sciatic nerve. We characterized heteromultimeric channel complexes that consist of either Kv1.5 and Kv1.2 or Kv1.5 and Kv1.4. In postnatal day 4 (P4) sciatic nerve, most of the Kv1.2 channel subunits are involved in heteromultimeric association with Kv1.5. Despite the presence of Kv1. 1 and Kv1.2 alpha subunits, the K+ currents were unaffected by dendrotoxin I (DTX), suggesting that DTX-sensitive channel complexes do not account substantially for SC KD currents. SC proliferation was found to be potently blocked by quinidine or 4-aminopyridine but not by DTX. Consistent with previous physiological studies, our data show that there is a marked downregulation of all KD channel alpha subunits from P1-P4 to P40 in the sciatic nerve. Our results suggest that KD currents are accounted for by a complex combinatorial activity of distinct K+ channel complexes and confirm that KD channels are involved in SC proliferation.  相似文献   

19.
ATP-sensitive potassium (KATP) channels are reversibly inhibited by intracellular ATP. Agents that interact with sulfhydryl moieties produce an irreversible inhibition of KATP channel activity when applied to the intracellular membrane surface. ATP appears to protect against this effect, suggesting that the cysteine residue with which thiol reagents interact may either lie within the ATP-binding site or be inaccessible when the channel is closed. We have examined the interaction of the membrane-impermeant thiol-reactive agent p-chloromercuriphenylsulphonate (pCMPS) with the cloned beta cell KATP channel. This channel comprises the pore-forming Kir6.2 and regulatory SUR1 subunits. We show that the cysteine residue involved in channel inhibition by pCMPS resides on the Kir6.2 subunit and is located at position 42, which lies within the NH2 terminus of the protein. Although ATP protects against the effects of pCMPS, the ATP sensitivity of the KATP channel was unchanged by mutation of C42 to either valine (V) or alanine (A), suggesting that ATP does not interact directly with this residue. These results are consistent with the idea that C42 is inaccessible to the intracellular solution, and thereby protected from interaction with pCMPS when the channel is closed by ATP. We also observed that the C42A mutation does not affect the ability of SUR1 to endow Kir6.2 with diazoxide sensitivity, and reduces, but does not prevent, the effects of MgADP and tolbutamide, which are mediated via SUR1. The Kir6.2-C42A (or V) mutant channel may provide a suitable background for cysteine-scanning mutagenesis studies.  相似文献   

20.
The high permeability of K+ channels to monovalent thallium (Tl+) ions and the low solubility of thallium bromide salt were used to develop a simple yet very sensitive approach to the study of membrane localization of potassium channels. K+ channels (Kir1.1, Kir2.1, Kir2.3, Kv2.1), were expressed in Xenopus oocytes and loaded with Br ions by microinjection. Oocytes were then exposed to extracellular thallium. Under conditions favoring influx of Tl+ ions (negative membrane potential under voltage clamp, or high concentration of extracellular Tl+), crystals of TlBr, visible under low-power microscopy, formed under the membrane in places of high density of K+ channels. Crystals were not formed in uninjected oocytes, but were formed in oocytes expressing as little as 5 microS K+ conductance. The number of observed crystals was much lower than the estimated number of functional channels. Based on the pattern of crystal formation, K+ channels appear to be expressed mostly around the point of cRNA injection when injected either into the animal or vegetal hemisphere. In addition to this pseudopolarized distribution of K+ channels due to localized microinjection of cRNA, a naturally polarized (animal/vegetal side) distribution of K+ channels was also frequently observed when K+ channel cRNA was injected at the equator. A second novel "agarose-hemiclamp" technique was developed to permit direct measurements of K+ currents from different hemispheres of oocytes under two-microelectrode voltage clamp. This technique, together with direct patch-clamping of patches of membrane in regions of high crystal density, confirmed that the localization of TlBr crystals corresponded to the localization of functional K+ channels and suggested a clustered organization of functional channels. With appropriate permeant ion/counterion pairs, this approach may be applicable to the visualization of the membrane distribution of any functional ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号