首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
刘伟达  孟立新  张树仁  张立中 《红外与激光工程》2016,45(12):1218004-1218004(7)
为保证GEO激光通信系统主镜的面形误差、主镜组件的结构刚度满足设计要求,需要进行主镜组件结构参数优化设计。由于组件的结构参数较多,为避免参数之间重复优化,提高优化设计效率,采用正交优化方法,用9种结构参数组合完成全部81种参数组合的主镜优化设计,保证了1 g重力、2℃径向温差分别作用时的面形误差RMS值满足RMS/50(=632.8 nm)的面形精度要求,并且改善了5℃均匀温升作用下的面形误差RMS值;在此基础上,进行了柔性支撑优化设计。仿真分析表明,主镜组件一阶频率为213 Hz,高于要求的200 Hz固有频率,主镜在1 g重力、2℃镜体径向温差和5℃均匀温升共同作用下的最大面形误差为10.78 nm,满足面形精度要求。经实验测试:5℃均匀温升的面形误差RMS值为7.27 nm,优于设计要求。优化设计为主镜组件的设计、加工、装校提供了技术支撑。  相似文献   

2.
李响  张立中  姜会林 《红外与激光工程》2017,46(12):1218003-1218003(7)
为了降低激光通信载荷在轨工作中空间环境对于光学系统的影响,提高通信质量以及跟踪精度,使用综合性能较好的高体分SiC/Al作为主镜材料,并通过有限元分析确定了主镜结构的几个重要优化参数。提出了一种一体式主镜柔性支撑,该结构避免了使用不同材料支撑组件线膨胀系数不匹配而产生的应力集中,提高了主镜面形的温度稳定性,并在此基础上降低了主镜及其支撑的总体质量,实现了光学系统的轻量化。仿真分析表明,该结构在重力释放条件下,主镜面形误差PV值为/52,RMS值为/275。工作环境发生4℃温度变化的情况下,主镜面形误差PV值为/11,RMS值为/71。主镜及其一体化支撑基频为208 Hz,主镜单独轻量化率为55.3%,进行一体化设计后主镜及支撑相比传统设计轻量化率为19.87%,能够满足总体指标要求。  相似文献   

3.
田伟  王平  王汝冬  王立朋  隋永新 《中国激光》2012,39(8):816002-232
光刻是大规模集成电路制造过程中最为关键的工艺,光刻的分辨力主要取决于光刻投影物镜的光学性能。光刻投影物镜光学元件面形精度为纳米量级,其对光学元件的加工及物镜单镜支撑提出了极高的要求。为193nm光刻投影物镜高精度的单镜面形,设计了一种运动学单镜支撑结构。运用有限元法(FEM)分析光刻投影物镜单镜运动学支撑结构在重力下物镜镜片的面形变化量,经分析物镜镜片的峰值(PV)值为15.46nm,均方根(RMS)误差为3.62nm。为了验证有限元计算精度,建立了可去除参考面面形及被测面原始面形的方法。经过分析对比,仿真结果与实验结果面形的PV值为2.356nm,RMS误差为0.357nm。研究结果表明,所设计的基于运动学193nm光刻投影物镜单镜支撑结构能够满足193nm光刻投影物镜系统对于物镜机械支撑结构的要求。  相似文献   

4.
结合某空间光学系统的任务需求,对其2m口径主镜的支撑难点作了详细的论述。为了使主镜达到光学设计所要求的面形精度,运用了结构有限元法和优化设计方法对主镜进行了支撑位置优化;并分别针对主镜轴向1 g 重力载荷、轴向1 g 重力载荷耦合1℃均匀温升两种工况,以主镜镜面RMS 为目标函数、力驱动器驱动力为优化变量进行了多参数优化。通过优化获得了最佳的驱动力组合,镜面RMS 分别达到19 nm、43 nm。该方法具有一定的应用价值。  相似文献   

5.
李小明  王隆铭  朱国帅 《红外与激光工程》2021,50(11):20210143-1-20210143-8
在组网“一对多”激光通信系统中,为了减小安装面平面度误差对反射镜面形的影响,保证组网“一对多”激光通信用伺服摆镜安装后的面形精度,对一体化SiC/Al摆镜支撑参数开展了理论分析,分析了各支撑参数对摆镜面形精度的影响规律。然后采用有限元分析优化设计了支撑参数,确定了支撑点位置和安装面平面度精度的要求。对采用优化设计参数后的摆镜面形精度测试表明,在加工面形为PV值优于53 nm(λ/12),RMS值优于10 nm(λ/60)的前提下,并在(20±5) ℃温度载荷作用下,摆镜安装后的面形精度PV值优于210 nm(λ/3),RMS值优于60 nm(λ/10)。同时,摆镜与安装基座由相同材料制作,这有效减小温度变化负载对面形精度的影响,完全满足组网“一对多”激光通信伺服摆镜面形的精度指标要求。  相似文献   

6.
在保证空间光学遥感相机反射镜组件结构刚度、位置精度、面形精度的同时,最大限度地降低反射镜支撑板的质量,是轻量化设计的一个重要内容。提出了通过拓扑优化确定反射镜用SiC/Al 材料的背部支撑板轻量化形式的方案。采用有限元分析法对获得的优化结果进行分析。分析结果表明: 重力载荷下面形精度达到/10 PV,/50 RMS(=632.8 nm),PV 值13.3 nm,RMS 值2.9 nm,反射镜组件一阶固有频率239 Hz,均优于传统结构形式的反射镜。拓扑优化的方法获得的轻量化背部支撑板能够满足使用要求。  相似文献   

7.
李响  白东伟  孟立新  高亮  安岩 《红外与激光工程》2021,50(7):20200464-1-20200464-10
针对空间碎片探测与测距复合系统地面验证演示实验中,工作环境10~30 ℃、光学基台的尺寸限制(不超过450 mm×400 mm)以及光学望远镜尾部安装导致重心远离安装面的问题,提出了空间碎片探测与测距复合系统光学望远镜的设计。使用ANSYS有限元分析软件对光学望远镜建立了有限元模型,针对环境温度10~30 ℃、尾部安装状态下、光轴方向和垂直光轴方向1 g (g=9.8 m/s2)重力加速度工况下进行了分析。分析结果表明:光学望远镜整机一阶模态为133 Hz动态刚度较好,重力为光轴方向时主次镜间距最大变化量0.01 mm,重力为垂直光轴方向时主次镜间距最大为0.007 mm,光学望远镜系统波像差RMS值为λ/15,次镜最大倾角1.93″,具有较好的力、热稳定性,可以满足光学天线装校、检测以及外场实验验证过程中的指标要求。在光学望远镜装校完成后,使用ZYGO干涉仪对其像质进行检测,在重力垂直于光轴方向、环境温度10、20、30 ℃条件下进行检测,结果显示:系统波像差RMS值分别为0.097λ、0.075λ及0.1λ,整机光学望远镜系统波像差RMS值在最低温与最高温度时均优于λ/10均满足系统使用要求。  相似文献   

8.
为了达到某新型机载光电系统的轻小型化要求,对共孔径组件中ΦΦ445 mm的主镜开展了轻量化设计。首先,对比分析了多种轻量化形式特点,确定了主镜材料和结构形式。然后,以主镜轻量化率和面形精度为目标,综合理论计算与有限元分析手段,对相关参数进行迭代优化,确定出镜厚为68 mm,面板厚度为6 mm,筋板厚度为4 mm,优化后轻量化率达62 %。接着,对主镜开展工程分析,在1 g重力作用下,单一主镜光轴竖直时RMS达1.13 nm,光轴水平时RMS达0.23 nm,冲击振动下最大局部应力为0.19 MPa,组件状态下主镜RMS达11.67 nm,各项指标均满足设计要求。最后,借助干涉仪对实物主镜进行光学检测,面形精度RMS实测值为15.19 nm,进而验证了轻量化设计分析的准确性。  相似文献   

9.
针对主镜口径为400 mm口径的跟踪望远镜的设计要求,提出了一种有效的结构形式。首先确定了望远镜的光学结构形式和系统参数,并将整个系统分成了几个主要组成部分。接着着重确定了主镜室的结构形式,通过优化最佳支撑位置确定了主镜的支撑结构;同时确定了次镜室以及三翼梁的结构。然后运用有限元建模、分析的方法,重点分析了反射镜的面形精度受重力变形和温度变化的影响,进行了整个望远镜系统的刚度分析和温度变化对主次镜间隔的影响。保证了主镜在极限情况下面形RMS 30/,整个系统具有较好的刚度和环境适应性。分析结果表明,反射镜支撑结构以及整个系统的设计均达到了设计要求,可以为类似结构提供一定的指导。  相似文献   

10.
在大俯仰角和极端温差条件下,保持地基光电成像系统主镜面形精度的稳定性是关键。文中提出了一种新型单芯轴支撑结构,旨在提高主镜在极端环境下的稳定性和热膨胀适应能力,从而保证面形精度。通过卡式第二定理深入分析单芯轴应力尺寸链参数对镜面误差的影响,并结合Isight平台和多岛遗传算法进行结构参数优化,实现了结构稳定性与面形精度的平衡。仿真结果表明,在不同环境条件下,主镜的均方根波前误差(RMS)均小于30 nm,峰值差(PV)小于120 nm,满足光学成像的高标准要求。此外,在ΔT=80℃、主镜光轴水平状态下,RMS和PV的优化率分别达到59.99%和23.2%,刚体位移的优化率高达21.96%,体现了设计的高效性。在20℃和40℃的控制室温条件下进行的激光干涉仪测试进一步证实了设计的有效性,以及与仿真结果的高度一致性。该研究为在大温差、大俯仰角条件下的地基光电成像系统中,中口径主镜的支撑结构设计提供了有力的参考,特别是在提高主镜面形精度方面具有重要意义。未来的研究将探讨该结构在更广泛温差和更大口径主镜下的应用,以及进一步优化其光学性能和结构稳定性。  相似文献   

11.
相机的结构空间是相机的重要子系统,是保证相机成像质量的关键之一。光学反射镜在重力和微重力环境变化以及热控温度范围变化综合影响下,面形误差变化量RMS和PV值是衡量相机成像质量的重要指标,结构还必须保证满足光学设计提出的各反射镜的各种公差要求,为保证相机在运输以及发射过程中能承受住恶劣的振动条件,需要整机有足够高的动态刚度和合理的模态分布。利用CAD/CAE技术对空间相机整机进行大量的工程分析,分析比较计算结果,此相机满足设计指标。CAE技术对空间相机光机结构设计起着重要的指导作用,是现代设计方法的重要手段之一。  相似文献   

12.
基于非理想标准镜的子孔径拼接干涉检测技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在大口径光学镜面的检测中,随着参考镜尺寸的增加,加工精度的制约,重力变形,温度,环境等因素的影响使得参考镜在检测中已经不能作为理想平面镜。文中基于最大似然估计(ML)算法,Zernike 多项式拟合对利用非理想平面镜作为参考镜的子孔径拼接检测建立了一套合理的拼接算法和数学模型。并结合工程实例,完成了对2.5 m3.5 m 椭圆形平面镜的模拟拼接实验,拼接前后全孔径面形误差分布是一致的,其PV 值和RMS 值的偏差分别为0.022 与0.001 3 。全口径相位分布的PV 值与RMS 值的相对误差分别为2.81%与0.81%。实验结果表明:利用ML 拼接算法可以高精度地完成对参考镜为非理想平面的大口径平面镜的拼接检测。  相似文献   

13.
刘小涵  李双成  李美萱  张容嘉  张元 《红外与激光工程》2021,50(8):20210025-1-20210025-9
主三反射镜支撑结构是离轴三反生物成像系统研制过程中的关键技术难点之一,为了减少工作环境下主三镜面形变化,满足支撑系统稳定性要求,利用有限元方法对主三镜组件进行了优化设计。首先,根据光学系统设计要求确定了反射镜及其支撑结构的材料和支撑方式。接着,优化布局了反射镜底部3点和侧面6点支撑位置,设计了轻量化镜室结构。根据优化数学模型设计了圆弧悬臂梁式柔性铰链结构,分析了在重力工况下和温度载荷工况下各参数对镜面面形精度的影响。然后,对反射镜支撑组件进行了静力学和热力学仿真分析,分析结果为重力工况下镜面均方根值RMS为1.529 nm,温度变化4 ℃时镜面均方根值RMS为2.426 nm。最后,采用Zygo干涉仪对支撑作用下的主三反射镜和系统波像差进行检测,实测反射镜镜面RMS值为0.025 λ,系统波像差RMS值为0.102 λ (λ=632.8 nm),基本满足了生物成像系统技术指标(主三镜镜面RMS≤λ/40,系统波像差RMS≤λ/10)要求。  相似文献   

14.
马铭泽  何煦  王金鑫  罗敬  徐天晓  林翠  周浩然 《红外与激光工程》2023,52(4):20230053-1-20230053-11
为保证大口径离轴三反消像散(Three-Mirror Anastigmat,TMA)光学系统在轨成像质量,探明离轴TMA系统中次镜位姿与主镜及三镜面形误差补偿机理,以矢量像差理论为基础,用Zernike多项式表述离轴TMA系统镜面面形误差,并对系统镜面面形误差进行解析。通过分析发现,位于非光阑位置三阶彗差经光瞳坐标变换衍生出与视场线性相关像散;提出结合失调离轴系统矢量像差校正解析式,以系统出瞳波像差RMS值为评价标准,构建离轴TMA系统像差补偿模型,利用次镜位姿对主镜及三镜存在面形误差的离轴TMA系统进行补偿。仿真实验表明:系统主镜存在0.5λ像散与彗差时,所构建像差补偿模型可将系统出瞳波像差由0.18λ补偿至0.08λ;系统三镜存在0.05λ像散与彗差时,可将出瞳波像差由0.3λ补偿至0.1λ,且当三镜面形误差在(-0.03λ,0.03λ)范围内时,可将系统各视场RMS值补偿至系统设计值,使系统成像质量满足要求,为大口径反射式空间望远镜在轨主动装调提供进一步理论指导。  相似文献   

15.
周忆  廖静  郭蕊  李剑波 《激光与红外》2014,44(5):554-558
为了实现倾斜安装放置状态的大口径精密光学元件低应力支撑结构分析设计,采用有限元分析方法,对45°倾斜角安装放置的精密光学透镜在自重作用下的镜面面形进行了研究。首先,建立了光学透镜不同胶结结构的有限元模型,从镜面对角线横截面自重变形及镜面面形的波面误差两方面,分析了两种胶结分布方式及不同胶点大小对镜面面形的影响。然后,在胶结结构基础上,建立了不同镜框支撑结构有限元模型,从镜面面形的波面误差方面,分析了支撑力分布方式对镜面面形的影响。最后,设计了胶结及镜框支撑的低应力支撑结构。分析结果表明,采用胶点直径为30 mm,矩形分布形式胶结,侧面均匀方式支撑镜框时,镜面面形的波面误差PV值为16.608 nm,RMS值为7.9385 nm,满足瑞利判据的要求,验证了支撑结构的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号