首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
空间调制全偏振成像系统可以通过单次成像获得完整的Stokes参量信息,其系统的有效光谱范围内对图像重构效果有较大的影响.当带宽超出有效光谱范围时,会影响Stokes参量解调精度,甚至无法解调.通过对空间调制全偏振成像系统的调制模型进行分析研究,依据波段宽度判据表达式,对有效光谱范围内的图像重构算法进行修正,最后对不同带...  相似文献   

2.
柏财勋  李建欣  周建强  刘勤  徐文辉 《红外与激光工程》2017,46(1):136003-0136003(6)
光谱和偏振辐射特性是实现精细目标识别的重要光学参量,融合光谱和偏振信息分量的光谱偏振成像探测技术有效利用两者的互补性,提高在复杂背景环境下的目标识别能力,在环境监测、军事侦察和大气分析等领域具有巨大的发展潜力。围绕目标的光谱和偏振信息探测问题,研究了一种基于微偏振阵列的干涉型高光谱偏振成像技术。在研究Sagnac干涉型高光谱成像技术的基础上,利用微偏振阵列调制原理引入Stokes偏振分量信息探测。通过分析系统的工作原理,设计了系统的干涉成像光路模型,并对光谱信息反演方法以及偏振信息提取方法进行了讨论分析。搭建了实验装置,对实际场景目标进行了光谱偏振成像实验,得到了较好的实验结果。研究表明:该光谱偏振成像技术不仅具有高光通量、高光谱分辨率的优点,而且能够实现偏振信息的同步获取。  相似文献   

3.
为了实现声光可调滤波器(AOTF)和液晶可调相位延迟器(LCVR)相结合的新型高光谱偏振成像系统全Stokes参量的快捷准确获取,提出了一种新的测量方法。该方法采用一个驱动信号源同时控制系统中两个LCVR,当LCVR在不同波长下进行相位调制时,依次取4个固定的驱动电压,求得不同波长下LCVR1和LCVR2的4组相位延迟,通过相应的数学计算即可快速精确求得目标光全部Stokes参量。波长为632nm时,以偏振方向分别为0°、90°、45°的偏振片和1/4波片为目标物,毛玻璃为背景,通过系统成像后获取了全部Stokes参量的图像。结果表明,该测量方法不仅可以快速准确地获取目标物全部Stokes参量,而且系统成像质量良好。对532nm波长下的真假树叶进行高光谱偏振成像,进一步验证了该测量方法的快捷准确和系统的可靠性。理论分析了影响Stokes参量测量精度的因素,为提高系统测量精度提供了理论基础。  相似文献   

4.
光谱偏振成像技术是成像光谱技术与偏振成像技术的有机融合,是当前空间光学遥感技术研究的热点和前沿。笔者于2010年在国际上首先提出了一种多信息融合的静态傅里叶变换超光谱全偏振成像方法,无运动、电控调制部件,在探测器单次积分时间内,可同时获取目标图像及图像上每一点的光谱、全偏振信息。同年,又提出时空混合调制模式的无源静态共轴干涉成像光谱全偏振探测装置,以视场光阑取代原有狭缝,进一步扩展了仪器光通量。在上述基础上,阐述了新方法的基本原理,给出了具体实现方案,推导出了新方案的调制干涉强度数据表达式及Stokes矢量解调公式,分析了新方法实现光谱、全偏振探测的物理过程。研制了原理验证样机,开展了室内、室外验证实验,首次获得了室外推扫光谱图像数据立方体和全色全偏振度图像,实验结果表明:新方案原理正确,技术可行。为新型空间遥感器的开发提供了基础理论及实践支持。  相似文献   

5.
现有的多光谱成像技术通常采用光学分光的方式,使用多个探测器对成像场景的光谱图像进行采集,导致现有成像系统复杂,数据量大、效率低。针对现有技术的不足,提出基于正交调制模式的光谱编码计算关联成像技术。通过正交光谱编码矩阵融合Hadamard基图案构造投影散斑对宽带光源进行调制,单像素探测器收集成像物体与调制光源相互作用后的反射信号;应用演化压缩技术复原成像物体的混叠光谱图像;利用编码矩阵的正交性质解码出欠采样的光谱分量图像,对分离出的图像应用组稀疏压缩感知算法重构全采样的光谱分量图像,最后融合出成像物体的多光谱图像。通过数值模拟与实验两方面验证了所提方法的高效性。所提的技术简化了多光谱关联成像系统,降低了数据量。光谱编码方法可以扩展到更多的光谱通道,也可以应用在偏振关联成像、信息加密等领域。  相似文献   

6.
贾镕  王峰  尹璋堃  刘晓 《红外技术》2020,42(12):1170-1178
针对传统检测方法无法在复杂背景下同时获取伪装材料偏振信息与光谱信息的局限性,本文利用高光谱偏振成像技术对典型伪装材料检测并分析其高光谱偏振特性。使用一套分孔径同时式高光谱偏振成像系统,对伪装涂层和伪装网等典型伪装材料进行高光谱偏振检测并解析出伪装材料的9个偏振参量,获得了伪装材料与背景的相对反射率随光谱改变的变化规律。结果表明,利用伪装材料与背景的偏振特性差异,选择合适偏振参量可以增加目标的纹理细节特征并提高其对比度;分析其光谱偏振特性,选择760 nm检测波段有利于快速准确地检测伪装材料。  相似文献   

7.
韩裕生  毛宝平 《红外》2014,35(8):5-9
作为一种无损检测方法,光学检验法是多种潜指纹检测方法中的首选。在面对越来越复杂的应用场景时,传统光学检验法往往效果不佳。然而偏振成像探测技术不仅能够获得目标的强度和光谱等信息,而且还能够得到偏振度和偏振角等反映目标表面细节特征的偏振信息,因此可以提高潜指纹检测效果。利用偏振成像技术的优势,开展了基于主动偏振光的潜指纹偏振成像检测实验研究,获取了指纹图像数据并对其进行了分析。结果表明,与一般的强度成像相比,本文方法所得到的潜指纹偏振参量图像质量更高,获取的图像更清晰,细节信息更丰富。  相似文献   

8.
穆竺  王加科  吴从均  颜昌翔  刘智颖 《红外与激光工程》2019,48(5):518004-0518004(8)
为准确方便获取4个波长相关的斯托克斯参量,可采用强度调制型偏振光谱成像技术,从偏振光谱强度调制理论与傅里叶变换解调方法入手分析推导计算了偏振光谱信息的复原过程,据此得到了系统的基本结构。以模块化设计的思路分别设计了光谱部分光学系统的前置望远物镜及Offner分光系统,设计结果实现了在400~1 000 nm谱段光谱分辨率1.24 nm,并结合光谱系统参数匹配设计完成了前端偏振光谱调制模块,给出了一套完整的设计实例。最后通过实验验证了偏振光谱调制模块设计的合理性与傅里叶变换解调方法的可行性,为偏振光谱信息复原奠定了基础。  相似文献   

9.
杨威  王晓曼  石林  赵海丽 《电光与控制》2021,28(6):72-75,89
针对传统偏振成像技术机械振动大、系统不稳定的问题,提出了一种基于Stokes矢量的双相机偏振成像技术,在液晶驱动控制器的作用下,驱动2个液晶可调相位延迟器(LCVR)进行柔性调制,利用相机采集目标的偏振图像,进一步得到Stokes矢量的分量图像,解算出偏振度、偏振角图像.该方法利用双相机同时成像技术,解决了单相机采集信息不完整的问题,可以实现完全Stokes测量,同时获得目标的线偏振和圆偏振图像.实验结果表明,偏振度(Dop)图像相较于线偏振度(Dolp)图像,包含了更多的细节信息,Dop图像在图像评价指标方面均有5%以上的提升,说明Dop图像可以更好地还原被测目标物.采用该方法可以提高对静态目标的识别能力.  相似文献   

10.
李美萱  王红  刘小涵  刘明  宋立军 《红外与激光工程》2021,50(7):20210184-1-20210184-8
为克服扫描方式多光谱成像无法捕获动态场景下的多光谱数据,提出了一种基于相位调制实现运动目标单次曝光多光谱成像方法。该方法将关联成像技术、压缩感知技术与光谱成像相结合,在成像光路中引入空间随机相位调制器,对运动目标物体三维图谱信息数据进行调制和压缩,然后利用探测器获取二维混叠信号,实现单次曝光获取运动目标的三维图谱信息重构,具有光能利用率高、成像时间短、系统结构简单等优点。实验结果表明:单帧CCD探测信号的电子数均值从200 e?按100 e?的间隔增加到1300 e?时,随着电子数均值增加,重构图像相对均方根误差rRMSE值对应减小,重构图像质量提高;当步进电机以30 Hz速度带动目标物体连续运动时,可获得较好质量运动物体的多光谱重构图像;采用光谱仪对目标物体中不同谱段的光谱分布曲线进行测试,所得结果与重构图像的光谱分布曲线相吻合,证明了该方法的有效性。研究结果对多光谱关联成像技术在无人机平台、动态监测等领域的应用提供了有益借鉴。  相似文献   

11.
在利用光学方法测量参数的技术领域,偏振光的调制和检测具有重大的实用价值.但目前的偏振遥感主要是线偏振参数的测量,不是全Stokes矢量的测量.为实现全矢量图像的测量和显示,需要构建一种应用于遥感测量的全偏振图像采集、存储、计算和显示系统.整个全偏振测量装置的核心是一个包含液晶调制器的双CCD成像装置.系统通过对液晶调制器的控制,对入射光进行相位调制,偏振分光棱镜将调制后的光束分为强度相等的两束光(o光和e光),并由两个CCD进行图像的实时同步采集,最后由数字信号处理器(DSP)进行全Stokes参数的计算并输出结果图像.实验结果表明:全Stokes矢量图像包含更多的图像信息,在目标识别和其他图像测量的应用上将会发挥巨大的作用.  相似文献   

12.
偏振光谱强度调制(PSIM)是一种先进的偏振光谱测量技术,测量数据处理是PSIM偏振光谱仪解析待测光偏振光谱信息的关键环节。论文从PSIM技术的调制、解调机理出发,结合相关数字信号处理理论,给出了从PSIM偏振光谱仪系统的测量数据中,解析待测光四个Stokes矢量元素谱的数学原理,建立了PSIM偏振光谱仪的测量数据处理流程。搭建了PSIM偏振光谱仪实验装置,分别对平行光管直接输出光信号及平行光管加透光轴水平方向偏振片后输出的光信号进行了测量实验。利用建立的PSIM偏振光谱仪测量数据处理流程,对实验装置的测量数据进行了偏振光谱信息解析处理,处理结果与理论分析结果间良好的一致性,验证了PSIM偏振光谱仪系统数据处理方法的正确性。  相似文献   

13.
刘震  洪津  龚冠源  郑小兵  杨伟锋  袁银麟 《红外与激光工程》2017,46(1):117003-0117003(7)
空间调制型全偏振成像系统利用 Savart偏光镜能够将被探测目标的4个 Stokes参数 S0~S3调制在同一幅干涉图像中,从而通过单次采集便可获得完整的偏振信息。在该系统中,半波片和检偏器的角度误差对 Stokes参数的测量精度有着不可忽略的影响。文中首先给出了包含上述两种角度误差的干涉强度调制方程,根据实际系统参数,在角度误差模型的基础上分析了当入射光为自然光、0/90线偏振光、45/135线偏振光和左/右旋圆偏振光时,角度误差对空间调制型全偏振成像系统的 Stokes参数测量精度的影响。利用这四种基态偏振光的偏振测量误差,给出了任意偏振态和偏振度的入射光偏振测量误差的表征方法,最后,文中以系统测量矩阵条件数为优化目标函数,经仿真计算得出当 Savart板厚度为 23 mm时系统测量矩阵条件取得最小值为 2.06,半波片和检偏器耦合角度误差对系统偏振测量精度的影响程度最小。  相似文献   

14.
李荣华  唐智超  朴俊峰  李宏亮 《红外与激光工程》2021,50(6):20200426-1-20200426-9
针对水体浑浊情况下,水中悬浮粒子对光的吸收和散射作用造成图像模糊、对比度低等问题,提出了一种偏振参数最优重构的水下降质图像清晰化方法。首先,通过局部最小值滤波估算水下背景光图像,引入 Stokes 矢量原理计算偏振度,通过归一化互信息进一步优化偏振度信息,获取成像区域最优的重构偏振参数;其次,采用形态学的方法重建图像自动估计水下无穷远处背景光值;最后,搭建了水下环境模拟平台,通过单通道偏振探测器实时获取水下偏振图像;为了验证算法的有效性,通过三种客观评价指标与其他复原方法进行比较,结果显示算法效果优于其他的水下图像复原方法。  相似文献   

15.
偏振信息解析是偏振成像探测涉及的一个重要课题.针对传统的偏振差分成像方法存在的不足,从信息论的角度出发,提出了一种基于最小互信息的自适应偏振差分成像方法.首先,利用偏振信息解析得到的斯托克斯参量图像,计算得到偏振片透光轴与所选参考坐标轴的成任意夹角的出射光强度图像;然后,以归一化互信息为评价指标,寻找具有最大不相关的两...  相似文献   

16.
李居尚  战荫泽  张立东 《红外与激光工程》2021,50(11):20210339-1-20210339-5
为了提高静态偏振光谱成像系统光谱分辨率并获得更好的目标识别能力,设计了正交组合沃拉斯顿棱镜组结构,配合静态相位调制技术完成了目标的偏振光谱成像。该技术采用了多级棱镜组合的方法在不扩大原有静态干涉棱镜尺寸的条件下扩大了空间光程差变化范围,从而提升了静态光谱分辨率。通过相位调制与图像周期性匹配的方法完成了二维图像与光谱分离。仿真分析了结构尺寸与调制度对光谱分辨能力的函数关系。实验采用计算模拟验证了二维图像与光谱分离的可行性。在晴天与阴天两种不同状态下,测试了30.0 cm铝板目标的信号对比度,采用偏振光谱成像并完成数据提取的测试结果均值为53.4%和49.3%,而基于强度图像的测试结果均值为24.4%和14.1%。文中设计可以改善目标识别效果,提高光谱分辨精度。  相似文献   

17.
张雅鑫  蒲明博  郭迎辉  靳金金  李雄  马晓亮  罗先刚 《红外与激光工程》2020,49(9):20201030-1-20201030-8
偏振是光的固有属性之一,然而传统的光强、光谱探测技术会造成电磁波的偏振信息的丢失。同时,基于偏振测量的器件及技术不仅存在视场局限的问题,而且系统复杂。基于介质型超表面设计了一种紧凑型大视场偏振探测器件,实现了对入射光的角度及偏振态的探测。该器件由2×2的二次相位超表面组成,每个超表面可实现对特定偏振的对称性变换,即将入射角旋转对称性转变为焦平面内焦点平移对称性。二次相位的对称性变换理论使得此文可以在宽角度范围内(-40°~+40°)通过测量焦点的偏移量实现对入射角的表征。在此基础上,分析了斜入射对测量Stokes参数的影响,得到矫正的Stokes公式。利用4个焦点的强度和矫正的Stokes公式可计算出入射光的Stokes参数。在视场角为0°、20°、40°时,测量的Stokes参数与理论值吻合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号