共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
基于区间二型模糊包含度的公理化定义,给出了新的区间二型模糊包含度计算公式.进一步,通过包含度定义了区间二型模糊粗糙集,并讨论了它的一些基本性质.最后,利用区间二型模糊粗糙集研究了连续域决策信息系统的属性约简,给出了新的约简方法.实例说明了该约简方法的具体计算步骤,并且通过实验验证了该算法的有效性和可行性. 相似文献
3.
4.
5.
一型模糊集可以建模单个用户的语义概念中的不确定性, 即个体内不确定性. 一型模糊系统在控制和机器学习中得到了大量成功应用. 区间二型模糊集能同时建模个体内不确定性和个体间不确定性, 因而在很多应用中显示了比一型模糊系统更好的性能, 是近年来的研究热点. 本文首先介绍了区间二型模糊集的重要概念和理论研究进展, 总结了其在决策和机器学习中的成功应用, 然后介绍了区间二型模糊系统的基本操作和理论研究进展, 并回顾了其在控制和机器学习中的典型应用. 最后, 对区间二型模糊集和模糊系统未来的研究方向进行了展望. 相似文献
6.
A Novel Green Supplier Selection Method Based on the Interval Type-2 Fuzzy Prioritized Choquet Bonferroni Means 下载免费PDF全文
In view of the environment competencies, selecting the optimal green supplier is one of the crucial issues for enterprises, and multi-criteria decision-making (... 相似文献
7.
PSO随机数参数设置的多目标定位方法研究 总被引:1,自引:0,他引:1
为了解决林业部门对森林防火安全监测系统中对多个声音目标的跟踪及定位问题,根据声音能量随距离衰减模型,提出了采用粒子群算法(PSO)的多目标定位与优化方法.通过利用极大似然法对声音强度模型的定位算法,采用惯性权重的粒子群算法,着重讨论了随机参数不同的设置方法对定位追踪精度性能的影响.通过仿真实验证明,粒子群算法中设置随机数参数为常数,可以有效提高目标定位精度,并减小搜索复杂度. 相似文献
8.
9.
Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network 下载免费PDF全文
Pratik Roy Ghanshaym Singha Mahapatra Kashi Nath Dey 《IEEE/CAA Journal of Automatica Sinica》2019,6(6):1365-1383
This paper proposes an artificial neural network (ANN) based software reliability model trained by novel particle swarm optimization (PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period. 相似文献
10.
广义区间二型模糊集合的词计算 总被引:2,自引:1,他引:2
普通的模糊集合是点值为二维的一型模糊集合,二型模糊集合(Type-2 fuzzy sets, T2 FS)是点值为三维的模糊集合, T2 FS比相应的一型难以理解和计算. 为了让人们更好地理解T2 FS并推广其应用, 本文提出了广义区间二型模糊集合(Generalized interval type-2 fuzzy sets, GIT2 FS)的定义, 并将其分成三类:离散型、半离散型及连续型,分别给出相应的数学表达式与扩展原理公式,并得到了GIT2 FS在两种不同的模糊逻辑算子下的词计算. 相似文献
11.
12.
13.
Runmei Li Chaoyang Jiang Fenghua Zhu Xiaolong Chen 《IEEE/CAA Journal of Automatica Sinica》2016,3(2):141-148
This paper proposes a long-term forecasting scheme and implementation method based on the interval type-2 fuzzy sets theory for traffic flow data. The type-2 fuzzy sets have advantages in modeling uncertainties because their membership functions are fuzzy. The scheme includes traffic flow data preprocessing module, type-2 fuzzification operation module and long-term traffic flow data forecasting output module, in which the Interval Approach acts as the core algorithm. The central limit theorem is adopted to convert point data of mass traffic flow in some time range into interval data of the same time range (also called confidence interval data) which is being used as the input of interval approach. The confidence interval data retain the uncertainty and randomness of traffic flow, meanwhile reduce the influence of noise from the detection data. The proposed scheme gets not only the traffic flow forecasting result but also can show the possible range of traffic flow variation with high precision using upper and lower limit forecasting result. The effectiveness of the proposed scheme is verified using the actual sample application. 相似文献
14.
文中利用严格等价函数提出一种基于区间二型模糊熵的图像阈值分割方法.首先基于公理化定义,利用严格定价函数提出一种区间二型模糊熵的构建方法,由此可以得到多个不同的模糊熵计算表达式;然后通过理论分析给出了利用最小化模糊熵准则选取最优阈值的方法.实验结果表明,与现有的其他模糊阈值分割法和改进的2维Otsu法等相比,该方法的分割更加准确,运行时间更少,具有更广泛的适应性. 相似文献
15.
Linguistic Dynamic Modeling and Analysis of Psychological Health State Using Interval Type-2 Fuzzy Sets 下载免费PDF全文
The study of psychological health state is helpful to build appropriate models and take effective intervention strategies, and the results benefit the intervened released from psychological distress within the shortest possible time. In this paper, interval type-2 fuzzy sets and fuzzy comprehension evaluation are applied in the analysis of mental health status and crisis intervention. A closed-loop linguistic dynamic intervention model for psychological health state is built. Linguistic dynamic systems based on interval type-2 fuzzy sets are used to describe and analyze the evolutionary process of psychological health status. 相似文献
16.
本文提出了将微粒群优化(PSO)算法应用于模糊控制器的参数优化设计中,针对常用的工业对象模型进行了仿真实验,仿真结果表明基于微粒群算法优化模糊控制器参数可以获得满意的控制效果,PSO算法为模糊控制器的设计提供了一种的新的思路. 相似文献
17.
水下机器人动力学模型参数辨识是水下机器人运动状态控制、路径跟踪、状态监测、故障诊断及容错系统开发的基础,是水下机器人研究的核心内容之一.针对Falcon开架缆控水下机器人的动力学模型,将量子粒子群优化算法引入到水下机器人动力学模型参数辨识之中,提出基于量子粒子群优化算法(Quantum-behaved PSO,QPSO)的水下机器人动力学模型参数辨识,并将其辨识结果与粒子群优化算法(Particle Swarm Optimization,PSO)及遗传算法(GA)的辨识结果进行比较.仿真结果表明应用QPSO算法的参数辨识结果明显优于其它对比方法,说明了算法的有效性与合理性. 相似文献
18.
提出一种基于类覆盖获取有向图和粒子群优化方法的模糊神经网络模式识别系统模型,该模型利用改进的贪心算法获得半径较均匀的超球体类覆盖,再利用超球体类覆盖实现模糊输入空间划分和模糊IF-THEN规则提取,以此实现模糊神经网络系统的结构辨识;采用改进的模糊加权型Mamdani推理法确定系统的输出,并使用基于粒子群优化的算法对系统参数进行精炼,使系统具有很好的强壮性和识别率.对11种矿泉水味觉信号的识别实验结果证明了该系统的可行性和有效性. 相似文献
19.
一种基于自适应模糊支配的高维多目标粒子群算法 总被引:1,自引:0,他引:1
高维多目标优化问题由于具有巨大的目标空间使得一些经典的多目标优化算法面临挑战.提出一种基于自适应模糊支配的高维多目标粒子群算法MAPSOAF,该算法定义了一种自适应的模糊支配关系,通过对模糊支配的阈值自适应变化若干步长,在加强个体间支配能力的同时实现对种群选择压力的精细化控制,以改善算法的收敛性;其次,通过从外部档案集中选取扰动粒子,并在粒子速度更新公式中新增一扰动项以克服粒子群早熟收敛并改善个体分布的均匀性;另外,算法利用简化的Harmonic归一化距离评估个体的密度,在改善种群分布性的同时降低算法的计算代价.该算法与另外五种高性能的多目标进化算法在标准测试函数集DTLZ{1,2,4,5}上进行对比实验,结果表明该算法在收敛性和多样性方面总体上具有较显著的性能优势. 相似文献
20.
Interval Type-2 Fuzzy Hierarchical Adaptive Cruise Following-Control for Intelligent Vehicles 下载免费PDF全文
Hong Mo Yinghui Meng Fei-Yue Wang Dongrui Wu 《IEEE/CAA Journal of Automatica Sinica》2022,9(9):1658-1672
Intelligent vehicles can effectively improve traffic congestion and road traffic safety. Adaptive cruise following-control (ACFC) is a vital part of intelligent vehicles. In this paper, a new hierarchical vehicle-following control strategy is presented by synthesizing the variable time headway model, type-2 fuzzy control, feedforward + fuzzy proportion integration (PI) feedback (F+FPIF) control, and inverse longitudinal dynamics model of vehicles. Firstly, a traditional variable time headway model is improved considering the acceleration of the lead car. Secondly, an interval type-2 fuzzy logic controller (IT2 FLC) is designed for the upper structure of the ACFC system to simulate the driver’s operating habits. To reduce the nonlinear influence and improve the tracking accuracy for the desired acceleration, the control strategy of F+FPIF is given for the lower control structure. Thirdly, the lower control method proposed in this paper is compared with the fuzzy PI control and the traditional method (no lower controller for tracking desired acceleration) separately. Meanwhile, the proportion integration differentiation (PID), linear quadratic regulator (LQR), subsection function control (SFC) and type-1 fuzzy logic control (T1 FLC) are respectively compared with the IT2 FLC in control performance under different scenes. Finally, the simulation results show the effectiveness of IT2 FLC for the upper structure and F+FPIF control for the lower structure. 相似文献