首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 98 毫秒
1.
脑电信号和眼电信号存在频谱混叠,目前的单通道脑电信号中眼电伪迹去除方法容易造成脑电信号失真。提出一种基于经验小波变换(EWT)和改进的自适应噪声完备经验模态分解(ICEEMDAN)的单通道脑电信号眼电伪迹去除算法。首先使用EWT将单通道脑电信号分解为δ频段和高频段信号,再用ICEEMDAN将δ频段信号自适应分解为多维本征模态函数(IMFs),设置样本熵阈值自动去除眼电伪迹信号,最后重构得到滤波后的脑电信号。基于半模拟脑电数据和真实脑电数据开展实验,结果表明所提算法相比于已有算法能够在去除眼电伪迹的同时更好地保留原始脑电信息。  相似文献   

2.
传统盲源分离法不能解决欠定问题,且分离信号与源信号对应关系不确定.提出一种基于自适应噪声完备经验模态分解(CEEMDAN)和独立成分分析(ICA)相结合的脑电信号眼电伪迹自动去除方法.该方法首先将含伪迹脑电信号自适应分解成多维本征模态函数(IMF),以满足盲源分离方法对信号正定或超定要求,再对本征模态函数用ICA方法构建多维源信号,最后利用模糊熵阈值判据判别多维源信号中的伪迹信号,完成滤波并重构脑电信号.该方法相比于其他算法,能更好的去除眼电伪迹并保留原始信息,适合单通道脑电信号预处理.  相似文献   

3.
传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。  相似文献   

4.
为了高效去除脑电信号(Electroencephalogram, EEG)中的眼电伪迹,文章提出一种基于小波变换(Wavelet Transform, WT)和快速独立成分分析(Fast Independent Component Analysis, FastICA)相结合的眼电伪迹去除方法。首先,应用小波变换将信号分解成不同频率的小波分量,采用适合的小波基函数和阈值针对高低频噪声做去噪处理;其次,应用FastICA算法分离出各通道的独立成分,获取纯净的脑电信号;最后,对BCI competition IV公共数据集应用融合算法,并输入支持向量机(Support Vector Machine, SVM)进行分类验证。实验结果表明,相较于单一的小波变换和FastICA算法,采用文章提出的融合算法处理后的脑电信号的SVM分类识别率分别提升了18.9%和15.8%,证明该融合算法对去除脑电信号中的眼电伪迹有较好的效果。  相似文献   

5.
王魁  叶闯  沈益青  王柏祥 《计算机工程》2011,37(23):257-260
为实现眼电伪迹的自动去除,提高算法的有效性和稳健性,提出一种眼电伪迹自动去除算法。采用样本熵和一种通用的伪迹判决方法对眼电伪迹进行自动识别,通过脑电信号的重构实现眼电伪迹的去除。实验结果表明,对于不同长度的真实脑电信号,该算法均能准确地去除眼电伪迹,较好地保留其他的脑电信号成分,且可以完全自动地去除眼电伪迹,适用于实时场合。  相似文献   

6.
典型相关分析去除脑电信号中眼电伪迹的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
给出了一种基于典型相关分析(Canonical Correlation Analysis,CCA)的盲源分离技术来去除脑电信号中的眼电伪迹。通过实验验证了基于CCA的盲源分离方法去除眼电伪迹的有效性,并将该方法与广泛使用的独立分量分析(Independent Component Analysis,ICA)进行了比较。实验结果表明,基于CCA的盲源分离方法可以对眼电伪迹进行成功地分离和消除,该方法相较于ICA方法而言,算法更为简单,计算速度更快。  相似文献   

7.
针对微弱的脑电(Electroencephalogram, EEG)信号在采集过程中夹杂着各种生理伪迹,特别易遭到眨眼和眼动产生的眼电(Electrooculography, EOG)伪迹干扰。本文提出在自适应噪声完备经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的基础上,构建盲反卷积(Blind deconvolution, BD)模型,实现EOG伪迹分离的方法。该方法首先运用CEEMDAN方法将含有伪迹的EEG信号分解成若干固有模态函数(Intrinsic mode function, IMF)分量,再以模态分量为观测信号送入EEG信号和EOG伪迹两个源信号构成的盲反卷积模型中,通过构建代价函数迭代实现EEG信号与EOG伪迹分离。为了验证新提出的算法,采用标准CHB-MIT头皮脑电数据库进行实验验证,EOG伪迹分离后的数据跟原始脑电数据作相关性分析,其相关系数是0.82。结果证实本文提出的方法保留有大多数原始EEG信号分量,同时对EOG伪迹的分离也具有良好的效果。  相似文献   

8.
眼电伪迹干扰是脑电信号中的常见干扰,严重影响到有用脑电信号的提取和分析。提出一种基于主分量分析(PCA)和特征矩阵联合相似对角化(JADE)算法相结合的眼电伪迹去除方法,并探讨了主分量分析对伪迹去除的影响。实验结果表明了该算法的有效性及稳健性,并且其时间开销小。此外该算法还可以有效去除其他脑电伪迹及干扰成分。  相似文献   

9.
脑电信号采集过程中易受眼电干扰,给脑电信号分析处理带来极大的不便,由此提出了一种改进独立分量分析(IICA)自动去除眼电伪迹的方法。该方法将水平和垂直眼电信号按照一定的比例混叠成一导新的信号,并与脑电信号一起作为输入;采用基于负熵判据的FastICA算法快速获取各导独立分量;记录此时的负熵判据参数[a],并利用相关系数识别混叠眼电信号独立分量,记录对应的相关系数;[a]加上一定的步长,重复上述步骤至[a]达到阈值时停止;重复多次上述循环,获取均值向量,取出均值向量中最大的相关系数与所对应的[a],根据[a]获取新的独立分量,采用相关系数自动识别混叠眼电独立分量,并置零;再进行ICA逆变换返回到原信号各个电极,即可得到同时去除水平与垂直眼电伪迹后的各导脑电信号。实验结果表明,IICA方法能有效降低去伪迹耗时,极大提高信噪比,减少均方根误差。  相似文献   

10.
为改进传统独立分量分析自动去除眼电伪迹算法中存在识别眼电分量速度慢、需采集同步参考眼电信号、丢失脑电信号问题,提出一种不需要参考眼电信号的眼电伪迹自动识别去除方法。利用FastICA分解出独立分量,计算各独立分量频谱能量熵,以频谱能量熵值作为判据识别出眼电分量;然后使用峰值窗口分离出眼电分量中存在的脑电信号,与其他独立分量进行拼接;利用FastICA逆变换重构出去眼电伪迹的脑电信号。实验结果表明:该方法能准确快速自动地去除眼电伪迹,并较好地保留其他的脑电信号成分;频谱能量熵识别眼电伪迹平均用时为0.01?s,准确率为98%,适用于实时EOG去除。  相似文献   

11.
针对传统方法滤波效果不佳的问题,本文提出了基于改进集合经验模态分解(Ensemble empirical mode decomposition,EEMD)的消除心电信号基线漂移方法。该方法克服了经验模态分解(Empirical mode decomposition,EMD)模态混叠的问题,并对EEMD方法存在的问题和不足进行改进,建立集合经验模态分解方法中加入辅助白噪声大小的可依据准则,从而确定加入的辅助白噪声大小以及集合平均次数这两个重要参数。它从含噪心电信号中提取基线漂移信号,然后重构其余本征模函数(Intrinsic mode function,IMF)分量得到"干净"的心电信号,为后续的研究提供前提。经实验验证表明:相较于传统方法,这种方法能够提高信噪比、降低均方差、保持特征波形、去噪更加彻底,很好地解决了心电信号低频成分损失的问题。  相似文献   

12.
人的脑电信号(Electroencephalogram,EEG)复杂且具有非线性及非平稳性的特点使其不易分析处理,其识别效果也依赖于数据集的不同,而表现不稳定.本文中应用的总体经验模态分解(Ensemble empirical mode decomposition,EEMD)是一种具有强自适应性的信号处理方法,其在时频域展现的良好分辨率特别适合脑电识别任务处理.本文提出利用EEMD分解后得到的较具影响能力的固有模态函数(Intrinsic mode functions,IMFs),利用希尔伯特变换提取边际谱(Marginal spectrum,MS)及瞬时能谱(Instantaneous energy spectrum,IES)时频特征,同时通过加窗的方法提取非线性动力学特征近似熵特征,利用线性判别分类器(Linear discriminant analysis,LDA)作为分类器,实验结果得出,对于被试S2和被试S3可达到识别率分别为79.60%和87.77%,实验中9名被试的平均识别率为82.74%,得到平均识别率也高于近期使用相同数据集文献的其他方法.  相似文献   

13.
应用小波变换和ICA方法的肌电信号分解   总被引:2,自引:0,他引:2  
基于单通道、短时真实肌电(EMG)记录和模拟EMG信号,提出一种改进的肌电信号分解方法。首先应用小波滤波、硬阈值估计等方法去除背景噪声和白噪声,并将独立成分分析(ICA)方法和小波滤波方法相结合去除工频干扰信号,然后再进行幅度滤波,从而提高了系统的速度和强健性。在运动单元动作电位(MUAP)聚类以及从原始信号中去除已识别的MUAP波形等方面也进行了改进。与已有的EMG分解方法相比,本文方法更快速、稳定。  相似文献   

14.
为了提高单通道盲源分离性能,首先由单路信号利用经验模态分解得到一系列本征模函数分量组合成多路信号;其次针对存在模态混叠的本征模函数分量,提出利用信号周期性构造其多路信号、并利用独立分量分析消除模态混叠的有效方法;然后利用互相关性消除上述所得到的多路信号中的虚假分量,并将剩余的分量信号与观测信号构成新的多路信号;最后利用Fast-ICA(fast-independent component analysis)算法分离得到源信号。仿真实验表明该算法能够有效分离源信号,分离性能优于目前已有的基于经验模态分解的单通道盲源分离算法。  相似文献   

15.
In this study, we propose an analysis system for single-trial classification of electroencephalogram (EEG) data. Combined with automatic EOG artifact removal and wavelet-based amplitude modulation (AM) features, the support vector machine (SVM) classifier is applied to the classification of left finger lifting and resting. Automatic EOG artifact removal is proposed to eliminate the EOG artifacts automatically by means of independent component analysis (ICA) and correlation coefficient. The features are then extracted from the discrete wavelet transform (DWT) data by the AM method. Finally, the SVM is used for the discriminant of wavelet-based AM features. Compared with EEG data without EOG artifact removal, band power features and LDA classifier, the proposed system achieves promising results in classification accuracy.  相似文献   

16.
结合小波包和ICA的脑电信号特征波提取方法   总被引:1,自引:0,他引:1  
为了更有效地提取脑电信号特征波,结合小波包和ICA(独立分量分析),提出了一种脑电特征波提取方法。首先对脑电信号进行小波包分解,然后进行相关频段信号的重构,从而提取出特征波的概貌作为初次提取的特征波;再利用ICA分离技术,以初次提取的特征波为参考信号对其进行增强。实验结果表明,对比于独立地应用某一种方法,两种方法相结合更能有效地提取脑电信号特征波。  相似文献   

17.
彭泓  杨巍 《测控技术》2017,36(1):124-128
针对小电流接地系统发生单相接地故障时,各线路零序电流的非平稳、非线性等复杂特性,提出一种基于总体模态分解(EEMD)和关联维数相结合的选线方法.EEMD算法是在经验模态分解(EMD)的基础上加以改进,能够消除模态混叠现象,同时保留了经验模态分解具有的良好的时频特性;EEMD能根据信号本身的特点对瞬时出现的信号进行分析,并将信号分解成若干个固有模态函数(IMF)分量和一个剩余分量.利用关联维数不易受噪声干扰特点,对分解的IMF信号分量进行处理,采用G-P算法计算关联维数,通过比较关联维数的大小选出发生故障的线路.仿真结果表明,该选线方法可靠性高且效果较好.  相似文献   

18.
为了探究正常人脑电β波(13 ~25 Hz)静息态功能连接,提出了一种结合独立成分分析(ICA)、图论、层次聚类、t检验、标准低分辨率电磁断层成像(sLORETA)技术的分析算法.对利用BP Analyzer 64导脑电仪采集的25个健康被试者在闲眼和睁眼静息状态下的高分辨率脑电信号β波(13 ~25 Hz)进行了功能连接研究,结果表明:(a)β波在闭眼状态下的功能连接明显多于睁眼状态;(b)从闭眼状态到睁眼状态,在右侧大脑顶叶、枕叶、颞叶区域β波功能连接明显减弱,而在双侧额叶连接增强;(c)静息态网络中的默认节点网络、视觉网络、运动感觉网络在闭眼状态下显著.因此,证明该算法适用于研究脑电β波静息态功能连接.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号