首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了满足目标检测任务实时性的要求,基于轻量级深度学习目标检测网络SSD_Mobilenetv1,通过改进其网络结构,以及增加更细粒特征图参与位置回归和分类来综合网络的上下文信息及引入反残差模块提升网络提取特征的能力,实验表明在保证实时检测速度的同时提高了检测精度,并在KITTI数据集上进行训练验证,取得了良好的效果。  相似文献   

2.
陈皋  王卫华  林丹丹 《红外技术》2021,43(4):342-348
为解决基于卷积神经网络的目标检测算法对预训练权重的过度依赖,特别是数据稀缺条件下的红外场景目标检测,提出了融入注意力模块来缓解不进行预训练所带来的检测性能下降的方法.本文基于YOLO v3算法,在网络结构中融入模仿人类注意力机制的SE和CBAM模块,对提取的特征进行通道层面和空间层面的重标定.根据特征的重要程度,自适应...  相似文献   

3.
基于改进SSD的轻量化小目标检测算法   总被引:10,自引:3,他引:10       下载免费PDF全文
为提高SSD目标检测算法的小目标检测能力,提出在SSD算法中引入转置卷积结构,采用转置卷积将低分辨率高语义信息特征图与高分辨率低语义信息特征图相融合,增加低层特征提取能力,提高SSD算法的平均精准度。同时针对SSD算法存在模型过大,运行内存占用量过高,无法在嵌入式ARM设备上运行的问题,以DenseNet为基础,结合深度可分离卷积,逐点分组卷积与通道重排提出轻量化特征提取最小单元,将SSD算法特征提取部分替换为轻量化特征提取最小单元的组合后,可在嵌入式ARM设备上运行。在PASCAL VOC数据集和KITTI自动驾驶数据集上进行对比实验,结果表明改进后的网络结构在平均精准度上得到明显提升,模型参数数量得到有效降低。  相似文献   

4.
苗传开  娄树理  公维锋 《激光与红外》2022,52(11):1717-1722
为有效解决红外舰船目标的检测问题,提出一种改进CenterNet的红外舰船目标检测算法。首先使用Mosaic算法进行数据增强,其次使用主干网络ResNet50对红外舰船图像进行特征提取,然后在原有特征图像处理的网络上添加Encoder模块,引入3×3的空洞卷积模块增大感受野,以提高网络性能增强网络的鲁棒性。实验表明,相比于改进之前算法,优化后算法精度提高了6%,准确率达98%,算法适应性强、准确率高,能够完成检测任务。  相似文献   

5.
针对仅配备CPU的红外成像系统,本文提出了一种基于中心点的实时目标检测方法。遵循轻量化的设计原则,首先引入了低计算成本的特征提取网络,并在此基础上设计了相应的特征融合模块以充分利用不同阶段提取的空间和上下文信息。同时为了进一步提高网络的表征能力,提出了一个背景抑制模块以完成对前景区域的特征增强,并最终通过轻量检测网络实现对目标中心点及其相应属性的预测。在红外空中目标数据集上的实验表明,本文所提方法能够在CPU上以21.69 ms每帧的速度达到90.24%的检测精度。与经典的Tiny-YOLOv3相比,在计算量和参数量仅为前者21%和11%的前提下,检测精度提高了10.94%,并且检测速度提高了10.02 ms,证明了方法在实时红外系统中的巨大应用潜力。  相似文献   

6.
红外伪装效果仿真检测方法研究   总被引:1,自引:0,他引:1  
红外伪装效果检测应尽量反映红外伪装器材在实战条件下的性能。但在目前条件下,当采用的红外伪装效果检测器材性能远落后于实战中敌方可能使用的红外侦察器材时,探讨现有资金和器材情况下,如何借助计算机仿真技术,通过改变测试距离,在保持目标发现概率不变的条件下,使测试结果尽可能地反映伪装器材在实战条件下的情况。  相似文献   

7.
传统红外图像行人检测方法利用人工进行比例模板设计和行人轮廓特征提取,由于预设模板比例相对固定,当行人因衣着增减、随身携带物品及姿态改变等原因使其轮廓比例发生较大变化时,往往会导致算法失灵而出现漏检现象。而基于深度学习的目标检测则通过对大量样本的本质特征进行抽象、提取、加工和整合,进而实现对更多样特征的学习。因此利用深度学习目标检测算法进行红外图像行人检测应用的研究可以弥补传统检测方法的不足。YOLOv3是目前性能较为均衡的识别算法,本文在分析YOLOv3系列算法的原理和特点的基础上提出了一个新的改进算法模型——Darknet-19-yolo-3,在几乎不损失检测精度的条件下提升检测速度,一定程度上实现检测准确率和速度的相对平衡。  相似文献   

8.
针对Faster R-CNN算法中对于红外舰船目标特征提取不充分、容易出现重复检测的问题,提出了一种基于改进Faster R-CNN的红外舰船目标检测算法.首先通过在主干网络VGG-16中依次引出三段卷积后的3个特征图,将其进行特征拼接形成多尺度特征图,得到具有更丰富语义信息的特征向量;其次基于数据集进行Anchor的...  相似文献   

9.
本文使用深度学习目标检测SSD算法对三种常见的苹果叶片病虫害——褐斑病、花叶病、铁锈病进行识别检测,实验结果显示该种方法的综合检测性能达到79.63%mAP,为苹果叶片病害的早期诊断提供了一种高性能的解决方案。  相似文献   

10.
红外图像可在低照度、恶劣天气等条件下工作,红外车辆检测技术旨在使用红外传感器来监测道路上的车辆,实现对车辆数量、车速等信息的收集与分析,该技术不仅可应用于路面车辆,还可应用于铁路、机场、港口等场景,为交通运输行业的安全和便捷提供了有效的技术支持。然而,由于红外图像成像原理的局限和外部环境的干扰,通常导致红外图像成像质量不理想,红外车辆检测仍然存在许多问题。文中提出了一种改进的YOLOv5模型,在YOLOv5的主干部分引入了混合注意力机制,使模型能够更好地关注研究者感兴趣的区域,抑制图像噪声的干扰。此外,在BiFPN基础上提出了一种改进的Z-BiFPN特征融合结构,融合更多的浅层信息,提高浅层信息利用率,并增加一个四分之一下采样的小目标检测层,同时将YOLOv5的检测头替换为解耦头来提升模型的检测能力。在自建的七类红外车辆数据集INFrared-417上进行了实验,验证了算法的有效可行性。与原始YOLOv5相比,m AP从81.1%提升到了85.3%。  相似文献   

11.
由于当前交通标示牌检测模型体积太大,检测速度太慢,无法在嵌入式设备上使用,为提高交通标示牌的检测速度,在SSD算法的基础上使用MobileNet作为主体网络进行特征提取,极大地减小了模型的体积,降低了模型计算量和硬件消耗。模型使用反卷积和跨层连接,不仅丰富了上下文信息,而且提高了检测精度。实验结果表明,这种技术在保证检测交通标示牌检测精度的同时,大大提高了检测速度,为模型在嵌入式设备上进行实时的交通标示牌检测提供可能。  相似文献   

12.
为准确定位航拍红外图像中光伏组件故障的区域位置,在单阶段多框检测(Single Shot Multibox Detector,SSD)模型的基础上设计了ResNet18_FPN_DN_SSD模型。首先用ResNet18替代SSD模型的基础网络VGG16,以提高故障特征的提取能力;然后引入DR loss,针对目标样本类别失衡及负样本过多的问题进行优化改善;最后在非极大值抑制(Non-Maximum Suppression,NMS)基础上做加权处理,使分类置信度高的边框充分利用周围对象的信息,提高预测框的分类置信度与定位准确率。实验表明:所提出的模型对图像中故障目标的检测效果,在定位精度、分类置信度和m AP上均优于传统SSD模型。  相似文献   

13.
基于深度学习的多视窗SSD目标检测方法   总被引:11,自引:2,他引:11       下载免费PDF全文
唐聪  凌永顺  郑科栋  杨星  郑超  杨华  金伟 《红外与激光工程》2018,47(1):126003-0126003(9)
提出了一种基于深度学习的多视窗SSD (Single Shot multibox Detector)目标检测方法。首先阐述了经典SSD方法的模型与工作原理,并根据卷积感受野的概念和模型特征层与原始图像的映射关系,分析了各层级卷积感受野大小和特征层上默认框在原始图像上的映射区域尺寸,揭示了经典SSD方法在小目标检测上不足的原因。基于此,提出了一种多视窗SSD模型,阐述了其模型结构与工作原理,并通过106张小目标图像数据集测试,评估和对比了多视窗SSD方法与经典SSD方法在小目标检测上的物体检索能力与物体检测精度。结果表明:在置信度阈值为0.4的条件下,多视窗SSD方法的AF (Average F-measure)为0.729,mAP (mean Average Precision)为0.644,相比于经典SSD方法分别提高了0.169和0.131,验证了所提出算法的有效性。  相似文献   

14.
基于深度学习的目标检测算法是目前目标检测领域 最流行的算法,但是由于硬件条件的限制,算法输入图像的尺寸受到限制。对于大尺寸的航 拍图像,通常先采用滑窗法提取区域,再对提取的 区域进行检测,极大地降低了算法的检测速度。针对这一问题,本文根据航拍图像中人造物 体含有 大量边缘的特点,提出了一种基于深度学习的梯度聚类目标检测算 法,并阐述了其模型结构与工作原理,然后通过151张航拍图像数据 集测试,对比评估了梯度聚类 SSD方法与滑窗SSD方法在航拍图像检测上的检测精度和检测速度。结果表明:梯度聚类SSD 方 法的FPS(Frames Per Second)为0.499,SPF(Seconds Per Frame )为2.00,mAP(mean Average Precision) 为46.93,相比滑窗SSD方法,在损失11.72%的 检测精度的条件下,FPS提高了64.69%(SPF提高了40.40%),验证了所提出算法的有效性。  相似文献   

15.
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means聚类算法的工作原理、实现流程、存在的弊端以及该算法的主要改进手段,并利用K-means聚类算法对Faster R-CNN锚点框的生成方式进行了改进。最后在CAFFE框架平台下进行了多次仿真实验,测试集来源于自建的专用于空中红外飞机检测任务的数据集,实验结果表明本文采用的改进手段可以在保证较高平均准确率AP的同时提高检测速度,并且给出了最适用于本文自建数据集利用聚类算法的k值。  相似文献   

16.
为了能够在移动设备等计算力弱的平台部署菜品识别系统,帮助人们了解菜品信息,对传统目标检测模型SSD做轻量化改进,提高了检测准确率和检测速度.首先使用MobileNetV2代替SSD模型的VGG-16,减少模型体积,提升运行速度;使用注意力机制和混洗通道算法,设计新的注意力逆残差块,增强特征提取能力;优化IOU计算方式,对回归定位损失函数做改变,加快模型的收敛;最后在自建的中餐菜品数据集Chinesefood上进行训练.实验表明,本文提出的Att_Mobilenetv2_SS-DLite轻量型目标检测模型相比SSD和其它目标检测模型效果更佳.  相似文献   

17.
基于改进LCM的红外小目标检测算法   总被引:5,自引:5,他引:5       下载免费PDF全文
张祥越  丁庆海  罗海波  惠斌  常铮  张俊超 《红外与激光工程》2017,46(7):726002-0726002(7)
如何在复杂背景和低信杂比条件下准确检测到小目标对于精确制导武器的发展和红外预警等具有重要意义。为了在复杂背景条件下提高图像信杂比并有效地检测出小目标,提出一种基于中心域与邻域灰度对比度的红外小目标检测方法。通过计算输入图像的对比度图和显著度图,提高了目标对比度同时抑制背景杂波;在此基础上自适应设定阈值分离出小目标。实验结果表明:与传统LCM(Local Contrast Measure)方法相比,所提出的方法能够取得更高的检测率和较低的虚警率,尤其是对于复杂背景下的弱小目标检测,相对于对比算法,优势更明显。  相似文献   

18.
鲁晓锋  柏晓飞  李思训  王轩  黑新宏 《红外与激光工程》2022,51(8):20210914-1-20210914-9
红外弱小目标检测技术是红外搜索与跟踪系统的重要组成部分(IRST)。一般来说,在复杂背景环境下,红外弱小目标检测往往会有高虚警率和低检测率的问题。为了解决这一问题,提出一个改进的加权增强局部对比度测量(IWELCM)检测框架,具有重要意义。首先,通过将局部对比度机制与信杂比(SCR)的计算相结合,提出一个增强的局部对比度测量方法,在增强图像中疑似红外弱小目标区域的同时也提高图像的SCR。其次,通过利用红外图像中弱小目标的特性,以及目标与周围背景的统计差异,提出一个改进的加权函数来进一步增强目标和抑制背景。最后,采用一个自适应阈值分割的方法去获取检测的目标。在不同场景的数据集上的对比实验表明,与七种现有流行的方法相比,提出方法在复杂背景下能够有效地从干扰对象中提取真实的红外弱小目标,具有更好的检测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号