首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite quadratic Lyapunov functions for constrained control systems   总被引:3,自引:0,他引:3  
A Lyapunov function based on a set of quadratic functions is introduced in this paper. We call this Lyapunov function a composite quadratic function. Some important properties of this Lyapunov function are revealed. We show that this function is continuously differentiable and its level set is the convex hull of a set of ellipsoids. These results are used to study the set invariance properties of continuous-time linear systems with input and state constraints. We show that, for a system under a given saturated linear feedback, the convex hull of a set of invariant ellipsoids is also invariant. If each ellipsoid in a set can be made invariant with a bounded control of the saturating actuators, then their convex hull can also be made invariant by the same actuators. For a set of ellipsoids, each invariant under a separate saturated linear feedback, we also present a method for constructing a nonlinear continuous feedback law which makes their convex hull invariant.  相似文献   

2.
3.
We study the invariance of the convex hull of an invariant set for a class of nonlinear systems satisfying a generalized sector condition. The generalized sector is bounded by two odd symmetric functions which are convex/concave in the right-half plane. In a recent paper, we showed that, for this class of systems, the convex hull of a group of invariant ellipsoids is invariant. This paper shows that the convex hull of a general invariant set need not be invariant, and that the convex hull of a contractively invariant set is, however, invariant.  相似文献   

4.
Conjugate Lyapunov functions for saturated linear systems   总被引:1,自引:0,他引:1  
Based on a recent duality theory for linear differential inclusions (LDIs), the condition for stability of an LDI in terms of one Lyapunov function can be easily derived from that in terms of its conjugate function. This paper uses a particular pair of conjugate functions, the convex hull of quadratics and the maximum of quadratics, for the purpose of estimating the domain of attraction for systems with saturation nonlinearities. To this end, the nonlinear system is locally transformed into a parametertized LDI system with an effective approach which enables optimization on the parameter of the LDI along with the optimization of the Lyapunov functions. The optimization problems are derived for both the convex hull and the max functions, and the domain of attraction is estimated with both the convex hull of ellipsoids and the intersection of ellipsoids. A numerical example demonstrates the effectiveness of this paper's methods.  相似文献   

5.
Several equivalent conditions or statements for set invariance were obtained for systems with one saturating actuator in a recent paper. In particular, it was shown that the existence of a nonlinear feedback that makes an ellipsoid invariant is equivalent to the existence of a feedback linear inside the ellipsoid that makes it invariant. In this paper, we will show that this equivalence property holds conditionally for systems with multiple saturating actuators. We will provide a criterion to check if the largest ellipsoid made invariant by nonlinear feedback can also be made invariant by a feedback linear inside the ellipsoid. Numerical examples reveal that this criterion is usually satisfied. The equivalence of other set invariance conditions will also be investigated.  相似文献   

6.
This paper investigates the estimate of domain of attraction for a class of nonlinear port‐controlled Hamiltonian (PCH) systems subject to both actuator saturation and disturbances. Firstly, two conditions are established to determine whether an ellipsoid is contractively invariant for the systems only with actuator saturation, with which the biggest ellipsoid contained in the domain of attraction can be found. Secondly, the obtained conditions are extended to estimate the domain of attraction of the systems subject to both actuator saturation and disturbances. Study of illustrative example shows the effectiveness of the method proposed in this paper. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
This paper considers a discrete-time linear system under nested saturation. Nested saturation arises, for example, in systems with actuators subject to both magnitude and rate saturation. A condition is derived in terms of a set of auxiliary feedback gains for determining if a given ellipsoid is contractively invariant. Moreover, this condition is shown to be equivalent to linear matrix inequalities (LMIs) in the actual and auxiliary feedback gains. As a result, the estimation of the domain of attraction for a given set of feedback gains is then formulated as an optimization problem with LMI constraints. By viewing the feedback gains as extra free parameters, the optimization problem can be used for controller design.  相似文献   

8.
This paper investigates PID control design for a class of planar nonlinear uncertain systems in the presence of actuator saturation. Based on the bounds on the growth rates of the nonlinear uncertain function in the system model, the system is placed in a linear differential inclusion. Each vertex system of the linear differential inclusion is a linear system subject to actuator saturation. By placing the saturated PID control into a convex hull formed by the PID controller and an auxiliary linear feedback law, we establish conditions under which an ellipsoid is contractively invariant and hence is an estimate of the domain of attraction of the equilibrium point of the closed-loop system. The equilibrium point corresponds to the desired set point for the system output. Thus, the location of the equilibrium point and the size of the domain of attraction determine, respectively, the set point that the output can achieve and the range of initial conditions from which this set point can be reached. Based on these conditions, the feasible set points can be determined and the design of the PID control law that stabilizes the nonlinear uncertain system at a feasible set point with a large domain of attraction can then be formulated and solved as a constrained optimization problem with constraints in the form of linear matrix inequalities (LMIs). Application of the proposed design to a magnetic suspension system illustrates the design process and the performance of the resulting PID control law.   相似文献   

9.
Design of the control law for planar motion of the wheeled robot was studied. The aim of control lies in driving the robot to the desired smooth curvilinear trajectory and stabilizing its motion. At that, the control resource and the domain of variations of the phase variables are bounded. It was previously suggested to construct the criterion for control law stabilizability as invariant ellipsoids, that is, quadratic approximations of the attraction domains of the target trajectory. Then construction of the invariant ellipsoids came to solving a system of linear matrix inequalities and testing a scalar inequality. The paper was devoted to practical application of the previous results. Choice of the parameters of the system of linear matrix inequalities was discussed. An algorithm to construct an invariant ellipsoid in at most three iterations was developed. It also determines the maximal ellipsoid for a given maximal permissible deviation of the robot from the target trajectory.  相似文献   

10.
This paper investigates the stability analysis and antiwindup design problem for a class of discrete-time switched linear systems with time-varying norm-bounded uncertainties and saturating actuators by using the switched Lyapunov function approach.Supposing that a set of linear dynamic output controllers have been designed to stabilize the switched system without considering its input saturation,we design antiwindup compensation gains in order to enlarge the domain of attraction of the closed-loop system in the presence of saturation.Then,in terms of a sector condition,the antiwindup compensation gains which aim to maximize the estimation of domain of attraction of the closed-loop system are presented by solving a convex optimization problem with linear matrix inequality(LMI)constraints.A numerical example is given to demonstrate the effectiveness of the proposed design method.  相似文献   

11.
This paper addresses the stabilization problem for a class of uncertain positive linear systems (PLSs) in the presence of saturating actuators. The objective is to obtain sufficient conditions for the robust stability of PLSs and to design robust state feedback control laws such that the closed‐loop uncertain system is asymptotically stable and positive at the origin with a large domain of attraction. Several sufficient conditions for robust stabilization and positivity are derived via the Lyapunov function approach and convex analysis method for both the discrete‐time and the continuous‐time cases, respectively. The state feedback controller design and the estimation of the domain of attraction are presented by solving a convex optimization problem with linear matrix inequalities (LMIs) constraints. A numerical example is given to show the effectiveness of the proposed methods.  相似文献   

12.
The stability analysis and anti‐windup design problem is investigated for a class of discrete‐time switched systems with saturating actuators by using the multiple Lyapunov functions approach. Firstly, we suppose that a set of linear dynamic output controllers have been designed to stabilize the switched system without input saturation. Then, we design anti‐windup compensation gains and a switching law in order to enlarge the domain of attraction of the closed‐loop system. Finally, the anti‐windup compensation gains and the estimation of domain of attraction are presented by solving a convex optimization problem with linear matrix inequality (LMI) constraints. A numerical example is given to demonstrate the effectiveness of the proposed design method.  相似文献   

13.
A composite quadratic Lyapunov function introduced recently was shown to be very useful in the study of set invariance properties for linear systems with input and state constraints and for systems with a class of convex/concave nonlinearities. In this note, more properties about this function are revealed. In particular, we study the continuity of the optimal parameter involved in this function. This continuity is crucial in the construction of a continuous feedback law which makes the convex hull of a group of ellipsoids invariant.  相似文献   

14.
We study the problem of stabilizing exponentially unstable linear systems with saturating actuators. The study begins with planar systems with both poles exponentially unstable. For such a system, we show that the boundary of the domain of attraction under a saturated stabilizing linear state feedback is the unique stable limit cycle of its time-reversed system. A saturated linear state feedback is designed that results in a closed-loop system having a domain of attraction that is arbitrarily close to the null controllable region. This design is then utilized to construct state feedback laws for higher order systems with two exponentially unstable poles  相似文献   

15.
Design of Switched Linear Systems in the Presence of Actuator Saturation   总被引:1,自引:0,他引:1  
For a group of linear systems, each under a saturated linear, not necessarily stabilizing, feedback law, we design a switching scheme such that the resulting switched system is locally asymptotically stable at the origin with a large domain of attraction. By expressing each saturated linear feedback in a convex hull of a group of auxiliary linear feedbacks, we formulate and solve the problem of designing such a switching scheme as a constrained optimization problem with the objective of maximizing an estimate of the domain of attraction. Simulation results indicate that the resulting domain of attraction extends well beyond the linear regions of the actuators.   相似文献   

16.
This paper investigates the estimation of domain of attraction for nonlinear port-controlled Hamiltonian (PCH) systems with actuator saturation (AS).Several conditions are established under which an el...  相似文献   

17.
This paper investigates the robust control problem for a class of uncertain switched fuzzy systems with saturating actuators. The asymptotical stability for fuzzy subsystems subject to actuator saturation is not assumed. Based on the multiple Lyapunov functions method, we design a switching law and a state feedback control law such that the closed‐loop system is asymptotically stable. Additionally, the estimation of the domain of attraction is presented by solving an optimization problem. Finally, simulation results verify the feasibility and effectiveness of the proposed method.  相似文献   

18.
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via state-dependent switching rules. Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid. These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type. In some cases, the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function. In this paper, we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently. The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size. Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size, i.e., a purely numerical method and a numerical-analytical one. In the former, both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities. The latter is established on a principle that the attractiveness of a set implies its invariance. Thus, the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension. Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.   相似文献   

19.
In this paper, we present some new approaches to improve the feedback property of delta operator systems with actuator saturation. Both enlarging the domain of attraction and maximising the convergence rate are the desired feedback properties. The lifting technique is used to enlarge the domain of attraction for the delta operator systems subject to actuator saturation. The maximisation of convergence rate is realised by designing control gain inside a given ellipsoid. A necessary and sufficient condition is proposed for the contractive invariance of the given ellipsoid. Simulation results are provided to demonstrate the effectiveness of the developed techniques.  相似文献   

20.
《Automatica》2014,50(11):2888-2896
This paper proposes a saturation-based switching anti-windup design for the enlargement of the domain of attraction of a linear system subject to nested saturation. A nestedly saturated linear feedback is expressed as a linear combination of a set of auxiliary linear feedbacks, which form a convex hull where the nestedly saturated linear feedback resides. This set of auxiliary linear feedbacks is then partitioned into several subsets. The auxiliary linear feedbacks in each of these subsets form a convex sub-hull of the original convex hull. When the value of the nestedly saturated linear feedback falls into a convex sub-hull, it can be expressed as a linear combination of the subset of all the auxiliary feedbacks that form the convex sub-hull. A separate anti-windup gain is designed for each convex sub-hull by using a common quadratic Lyapunov function and is implemented when the value of the nestedly saturated linear feedback falls into this convex sub-hull. Simulation results indicate that such a saturation-based switching anti-windup design has the ability to significantly enlarge the domain of attraction of the closed-loop system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号