首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
随着红外热成像系统的不断发展,对红外光学系统也提出了更高的要求。为了满足红外探测器在军事方面的广泛应用,整机系统对高性能、大变倍的红外连续变焦光学系统的需求日益增强。针对高端中波制冷型640512 凝视焦平面探测器,设计了结构紧凑、性能优良的高清晰大变倍比机械补偿连续变焦光学系统。该系统工作波段为3.7耀4.8m,F 数为4,变倍比为35:1,变焦范围为15~550mm。该系统运用平滑换根理论,实现了超大变倍比的连续变焦光学系统设计,并且采用二次成像以及45反射镜对光路进行U 型折叠,在实现了冷屏效率100%的同时有效控制了该系统的横向和径向尺寸。采用光学设计软件CODE V 进行了仿真计算和像质评价,并绘制了该系统的变焦曲线。设计结果表明,该连续变焦光学系统具有分辨率高、变倍比大、结构紧凑、在全焦距范围内成像质量优良并且变焦轨迹平滑等优点,能够与高性能中波红外探测器匹配用于高端红外热成像系统。  相似文献   

2.
提出了一种新型连续变焦结构形式,在现有经典四组元机械补偿变焦模型的基础上,添加一个独立的变倍组,利用二个变倍组级联的方式获得超大变倍比,并推导了数学模型.在此基础上,针对制冷型中波探测器,研制了一套大变倍比大相对孔径连续变焦红外光学系统,解决了大相对孔径红外变焦系统变倍比难以提高的问题.该光学系统工作波长3. 7~4. 8μm,冷光阑效率100%,可实现从焦距6 mm至330 mm连续变焦,在F数恒定为2的同时,变倍比高达55倍.该系统仅包含八片镜片,其中三片镜片独立运动实现变焦.设计结果显示,该系统在6 mm至330 mm的焦距范围内,变焦曲线平滑、像质良好.实验室测试和外场成像结果显示,该系统在整个焦距范围内成像效果清晰,达到设计要求,验证了这种新型连续变焦数学模型的应用效果.  相似文献   

3.
设计了一款长焦距大变倍比轴向变倍四视场中波红外光学系统.该光学系统由前固定组、变倍调焦组、中间补偿组、后固定组、反射镜一、反射镜二、中继组组成.光学系统采用光学补偿叠加机械补偿方式克服单一光学补偿或机械补偿变焦方式无法同时满足光学系统长焦距、大变倍比、光学系统小型化、光学系统宽温度范围(-40℃~70℃)温度补偿等问题,实现了兼具长焦距和大变倍比的轴向变倍四视场中波红外光学系统.设计结果表明该光学系统像质良好,满足热象仪整机使用要求.  相似文献   

4.
针对同时兼顾大范围搜索和精确识别目标的迫切需求,研制了一种大变倍比红外变焦成像系统,设计两片独立运动的变倍镜及一片补偿镜,通过两个变倍镜级联的方式获得大变倍比。结合系统运动镜片多及变焦曲线复杂的特点,采用直线运动机构实现镜片变焦运动,使用集成编码器及螺纹丝杆的直线电机作为驱动。通过有限元仿真开展了系统力学分析,所设计镜片最大位移为3.04×10-3 mm。成像系统适用于中波红外制冷式640×512焦平面阵列探测器,变倍比达到55倍。实验室成像及外场实景成像的结果表明,系统在焦距由6 mm至330 mm连续变化的过程中成像清晰、像质良好,验证了系统的连续变焦成像性能,该设计合理可靠。研究成果在搜索、跟踪、侦察、监视等方面有广阔的应用前景。  相似文献   

5.
王臻 《激光杂志》2015,(2):66-68
设计了一种基于机械补偿式大变倍比折衍射混合中波红外连续变焦光学系统。光学系统的焦距为50mm到600mm,变倍比为12:1。系统的变焦曲线平滑,图像可一直保持清晰,系统的MTF达到了衍射极限。这种折衍射混合连续变焦光学系统具有好的成像质量、灵巧的变倍机构,因此在高性能红外热像仪中得到广泛应用。  相似文献   

6.
针对制冷型320pixel×240 pixel凝视焦平面阵列探测器,设计了一款10倍中波红外连续变焦光学系统。系统采用机械正组补偿变焦结构,通过二次成像设计实现系统100%的冷光阑效率,利用硅和锗两种普通红外光学材料,通过引入合理的非球面和衍射面,借助ZEMAX光学设计软件对系统进行优化设计和像差平衡,实现了20~200mm的中波红外连续变焦系统的优化设计。设计结果表明:系统仅采用7片镜片,实现了变倍比为10、F数为2、工作波段为3.7~4.8μm的中波红外连续变焦系统的优化设计,系统的调制传递函数在空间频率16lp/mm处大于0.4,点斑均方根半径均小于16μm,接近衍射极限,满足系统成像要求,且系统的变焦曲线平滑,符合变焦要求。  相似文献   

7.
机载新颖连续变焦中波红外光学系统设计   总被引:1,自引:0,他引:1  
针对制冷式640×512元凝视焦平面阵列探测器,设计了结构紧凑的高性能机械补偿30倍连续变焦光学系统.该系统采用新颖的三组元变倍形式和三次成像方法设计.工作波段为3.7 ~ 4.8 μm,F/# =4,变焦范围750 ~25 mm.首先利用光学设计软件给出了系统的光学外形结构图; 然后,进行了像质评价分析,变焦曲线分析,温度环境适应性分析和冷反射分析; 最后,介绍了该系统应用微扫描成像技术提高分辨率的方法.结果表明,该光学系统在空间频率30 lp/mm处的光学传递函数 ( MTF) 值均接近衍射极限, 弥散斑直径的均方根 ( RMS) 值均小于15 μm.变焦曲线平滑,且移动组最大行程小于71 mm.移动组透镜的轴向移动可完成系统调焦及温度补偿.光学系统满足100 %冷光阑效率,在-40 ~60 ℃温度范围内均有良好的像质.同时,满足新一代机载前视红外( FLIR)系统的要求.  相似文献   

8.
针对中波制冷型640512凝视焦平面探测器,设计了一个大变倍比中波红外连续变焦光学系统。该系统采用三次成像技术,其工作波段为3.7~4.8 m,F数为4,变倍比为30:1,可实现23~701 mm连续变焦,变焦轨迹平滑,满足100%冷光阑效率。该系统采用硅、锗和硒化锌三种红外材料,通过引入非球面和衍射面来校正系统的轴外像差和高级像差。系统在30 lp/mm处,全焦距范围内调制传递函数(MTF)均在0.15以上,接近衍射极限。设计结果表明,大变倍比中波红外连续变焦光学系统具有变倍比大、分辨率高、结构紧凑、像质好等优点。  相似文献   

9.
王玮超 《红外》2020,41(12):36-42
为适应不同类型建筑的红外非接触式安全与质量检测需求,针对像元尺寸为14 μm×14 μm的1024×768元高性能非制冷长波红外探测器,采用变倍组光焦度为负值、补偿组光焦度为正值的正组补偿结构形式,并合理分配各组透镜的光焦度,设计了一种焦距为30~180 mm、工作波段为8~12 μm、 F数为1.2的大变倍比非制冷红外连续变焦成像光学系统,然后对其成像效果进行了分析。结果表明,该系统在变焦过程中成像质量良好,在探测器36 1p/mm特征频率处的光学调制传递函数(Modulation Transfer Function, MTF)值大于0.3,满足应用需求。  相似文献   

10.
高变倍比全动型变焦距光学系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高变焦距系统的变倍比、扩大系统的视场,同时简化系统的结构,采用多组全动型机械变倍补偿形式,同时对系统的前组进行复杂化设计。选取10个焦距位置进行设计计算,设计了焦距7.0~1 400.0 mm,视场0.25~47.44的200倍连续变焦距系统。整个系统由6组19片透镜组成,系统具有超大变倍比,大视场等特点。结果表明:多组元全动型变倍补偿形式对于实现大变倍比和简化系统结构是十分有效的。通过对设计结果以及凸轮拟合曲线分析,整个系统成像质量达到设计要求。  相似文献   

11.
曲锐  郭惠楠  曹剑中  杨建峰 《红外与激光工程》2021,50(9):20210090-1-20210090-7
变焦系统中,动组间相对位置的变化会导致各镜组的初级像差特性发生变化,环境温度的变化还会导致各焦距位置热差的改变,给无热化连续变焦系统的设计造成较大困难。针对该问题,从光学系统像差模型出发,将变焦系统像差分为定组像差、动组内像差和动组间像差三类,并结合变焦系统的消色差和消热差模型,讨论了无热化连续变焦光学系统的设计原则,及变焦系统设计中各组元的光焦度分配和材料选用方法,给出了一个宽波段连续变焦光学系统设计实例,该系统F数为5、焦距范围为8~120 mm、焦面对角线长6.2 mm、波长范围为0.48~0.68 μm和0.7~0.9 μm。所述系统仅采用了七种普通光学玻璃材料,透镜总数12组16片,总长仅90 mm,在?40~60 ℃范围内,变焦全程均具有较好的成像质量和公差特性。  相似文献   

12.
侯国柱  吕丽军 《红外与激光工程》2020,49(7):20190519-1-20190519-10
变焦鱼眼镜头系统具有更大的视场角、更大的相对孔径、更大的反远比的特点。文中的设计过程中,首先,利用平面对称光学系统理论设计了固定焦距的鱼眼镜头初始结构;然后,把此鱼眼镜头的组元划分为前变焦组和后变焦组两个变焦组,并利用了高斯光学理论对整个变焦镜头进行了变焦优化;最后,得到一成像质量良好的变焦鱼眼镜头。该镜头最短焦距8 mm时的视场角为180°,最长焦距16 mm时的视场角为90°,其相对孔径为1/3.5。设计结果表明:该变焦鱼眼镜头系统的调制传递函数(MTF)数值在不同的焦距长度、空间频率为50 lp/mm时均不低于0.45,该变焦鱼眼镜头物镜比其他变焦鱼眼镜头具有更好的成像质量。  相似文献   

13.
赵坤  李升辉 《红外与激光工程》2013,42(11):2889-2893
为了解决红外变焦系统短焦部分冷反射严重的问题,提出了一种双孔径设计方法,设计了一种双孔径红外变焦光学系统。系统工作波段为中波3.7 ~4.8 m,焦距为30/150/300 mm,10变倍比,具有100%冷光阑效率。对双孔径系统的短焦部分和单孔径系统短焦部分的冷反射强度进行了对比分析,双孔径系统的冷反射得到有效控制。双孔径红外变焦光学系统具有像质好、变倍比大、短焦冷反射小、结构紧凑的特点,可使大变倍比的红外变焦光学系统在红外成像系统中得到广泛应用。  相似文献   

14.
陈潇 《红外技术》2021,43(12):1183-1187
随环境温度变化红外镜头会产生热离焦现象,一般定焦红外光学系统可通过多种红外材料组合或引入衍射面来实现光学被动式无热化设计,而变焦红外光学系统大多是通过移动透镜组来实现机械主动式无热化设计。文中根据光学变焦原理和光学被动式无热化原理,提出一种变焦光学被动式无热化设计方法,并采用该方法设计了一种大相对孔径双视场无热化长波红外光学系统。该系统焦距为25/50 mm(变倍比为2:1),工作波段为8~12 μm,F数为0.9,可匹配640×512,像元为17 μm×17 μm的非制冷红外焦平面阵列探测器。光学设计中采用3种红外光学材料(硫系玻璃HWS6、硒化锌和锗)组合,并引入3个偶次非球面,实现变焦无热化设计。设计结果表明:该系统在宽温度范围内具有良好的成像效果和温度自适应性,在空间频率30 lp/mm处,-50℃~80℃温度范围内各视场MTF均大于0.3。该红外光学系统结构简单、工艺良好,在红外车载领域有着广泛应用前景。  相似文献   

15.
长焦距大变倍比中波红外变焦距系统设计   总被引:2,自引:0,他引:2  
江伦  黄玮 《红外与激光工程》2012,41(7):1867-1871
为实现红外连续变焦距系统变倍比大、焦距长和系统结构简单的需求,在光学系统中引入衍射元件(DOE),设计了一套3.7~4.8μm波段折/衍混合连续变焦光学系统。该系统突破了传统折射式中波红外变焦系统难以同时满足变倍比大、焦距长、系统结构简单等要求的局限,其变倍比为20×,可在35~700mm焦距范围内连续变焦,仅包含6片透镜和2片平面反射镜。在空间频率17lp/mm处,系统在全焦距范围内调制传递函数MTF>0.5;变焦过程中系统弥散斑直径均方根值小于20μm,表明该系统成像质量良好。  相似文献   

16.
提出了一种新的基于仿生鱼眼镜头模型的超大视场变焦仿生眼光学系统。该仿生眼应用可调光焦度器件能使光学系统更紧凑和不需要移动。鉴于鱼眼系统可以简化成反远物镜的原理,利用矩阵理论和变焦准则,研究了基于可调光焦度器件鱼眼镜头设计的一阶几何光学理论,得到了鱼眼系统前组和后组的光焦度控制方程;进一步讨论了其光焦度的边界方程;最后提供的仿生变焦鱼眼的视场角最大为164,焦距从5~15 mm变化,成像质量达到系统要求。设计实例为其在智能监控、航天军工、机器人系统等领域的应用提供了有益的探索。  相似文献   

17.
尹晶  刘旭  徐晓影  崔艳群  王强  郭富城 《红外技术》2021,43(11):1073-1080
红外变焦监视镜头的F数与焦深相对较小,因此温度变化极易导致离焦现象,导致成像质量下降。本文针对火情监察红外变焦镜头在-40℃~50℃范围内成像清晰的技术要求,采用有限元法分析温度变化下各光学镜片前后镜面的刚体位移与旋转量,将刚体位移导入至Sigit光机集成分析软件中仿真出温度变化工况下镜头的离焦量,分析结果表明焦距值变量在-0.16~+0.4 mm之间,调焦量为0.108~0.188。针对上述情况,采用两个凸轮两套执行机构来分别控制变倍组和补偿组的移动,实现镜头的主动消热差保证温度变化下成像仍旧清晰。最终通过温度可靠性实验对镜头光学分辨率温度适应性的进行考核,实验结果表明在温度变化过程中空间分辨率均大于30 lp/mm,变焦过程成像质量基本清晰。  相似文献   

18.
唐晗  郑万祥  曾兴容  杨丹  周春芬  曹凌  徐曼  李洪兵  杨开宇 《红外与激光工程》2023,52(4):20220607-1-20220607-11
随着红外技术的快速发展,SWaP-C (尺寸小、质量轻、功耗低、成本低)概念已深入红外热像仪整机设计全过程。在非制冷连续变焦红外热像仪设计中,相对已模块化的非制冷探测器与成像电路、光学系统影响整机包络尺寸、产品质量及价格成本,因此设计一款总长短、质量轻、成本低、性能高的非制冷长波红外连续变焦光学系统将具有广阔的市场前景。非制冷长波红外连续变焦光学因相对孔径大、光学材料种类少等因素存在系统小型化和无热化设计难题,通过采用变F#设计方法约束物镜尺寸;利用三组联动变焦技术平衡像差、压缩系统总长;通过主动补偿的消热差技术使得系统在-40~+60℃温度范围成像质量良好,实现四片透镜构成的非制冷长波红外连续变焦光学系统设计。该系统工作波段为8~12μm,焦距变化范围为20.7~126 mm,对应F#为1.05~1.2,视场变化范围为21°×16.8°~3.5°×2.8°,变倍比为6.0×,最大物镜直径116 mm,光学系统总长180 mm,光学零件总质量418 g。该光学系统具有轻小型、高性能、低成本等SWaP-C特征,将在无人装备平台及手持热像仪设备中得到广泛应用。  相似文献   

19.
邓强  李升辉 《红外与激光工程》2019,48(11):1114005-1114005(8)
为了满足基于TIR棱镜的高分辨率工程投影机对高分辨率、高照度均匀性、长后工作距离及连续变焦投影的工作需求,设计了一种基于TIR棱镜的高分辨率像方远心连续变焦投影镜头。该镜头焦距为25~32 mm,F#为2.4,工作在可见光波段。该投影镜头具有靶面大、分辨率高、后工作距离长及照度均匀性高的设计难点,通过选择反远距的双高斯结构,控制像方远心度,通过采用不同材料搭配,并借助CODE V的玻璃专家优化功能,反复迭代优化,最终,得到满足使用要求的连续变焦投影镜头。结果表明:该镜头在连续变焦过程中各视场MTF值在72 lp/mm处不低于0.4,各视场RMS弥散斑直径小于8.5 m,畸变小于2%,短焦边缘视场照度均匀性大于95%。该连续变焦投影镜头采用全球面设计,结构紧凑,成像质量好,畸变、垂轴色差和照度均匀性都得到了较好的控制,可以很好地满足高分辨率工程投影机的投影需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号