首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.

针对航天器姿态稳定控制问题, 设计一种迭代学习姿态控制器. 将连续非周期运动的姿态跟踪过程分解为队列重复运动, 采用前一周期的姿态跟踪误差修正后一周期的控制输入, 分别对未知参数和干扰构建有界迭代学习律, 给出航天器姿态稳定控制器, 并从理论上分析了闭环系统的渐近稳定性和姿态跟踪误差的一致有界性. 通过在轨捕获非合作目标过程中航天器姿态跟踪控制问题的数值仿真, 验证了迭代学习控制器的鲁棒性和强抗干扰性.

  相似文献   

2.
针对四旋翼飞行器参数不确定性和外部干扰敏感的问题,本文提出一种基于自抗扰控制器的控制系统设计方法.在为期望姿态和高度安排过渡过程的基础上,设计了扩张状态观测器对内扰和外扰进行估计并实时补偿,能够很好地克服飞行器的强耦合性、模型不确定性以及风速变化等外部干扰问题.此外本文还设计了非线性状态误差反馈控制律来有效抑制跟踪误差.在仿真平台上对自抗扰控制系统进行稳定控制、姿态跟踪、高度控制、抗扰性及鲁棒性实验,并与串级PID控制系统进行定量对比分析.仿真结果表明,本文所设计的自抗扰控制器不仅能够很好地估计并补偿系统所受内外部干扰,而且对四旋翼飞行器参数的不确定性具有较强的鲁棒性,能够满足飞行器姿态调节快速和高稳定度的控制要求,性能指标明显优于串级PID控制器.  相似文献   

3.
航天器姿态自抗扰控制   总被引:1,自引:0,他引:1  
为抑制航天器自身结构参数变化和内外扰动对姿态控制精度和姿态稳定度的影响, 设计了航天器姿态自抗扰控制器. 自抗扰控制器(ADRC)由跟踪微分器(TD)、扩张状态观测器(ESO)和姿态反馈控制器(AFC)3部分组成.跟踪微分器负责安排姿态指令过渡过程, 并提取其微分信号. 扩张状态观测器(ESO)充分利用姿态敏感器与速率陀螺的量测信息, 可对航天器姿态及内部和外部干扰进行观测. 姿态反馈控制器则在补偿ESO估计的干扰的同时,实现航天器的姿态控制. 与已有研究相比, 扩张状态观测器采用复合量测信息对状态估计进行校正, 性能较好. 而自抗扰控制器只采用一个环路即可实现姿态控制及干扰补偿, 结构简单. 对某航天器姿态控制系统的仿真结果表明,以上自抗扰控制器是可行的.  相似文献   

4.
针对自旋飞行器高速自旋的特点,介绍了一种具有横滚隔离功能的捷联惯导系统,着重研究了横滚隔离激光捷联惯导系统稳定回路的自抗扰控制问题.通过对横滚隔离激光陀螺单轴稳定平台状态空间模型的分析,利用自抗扰控制思想,建立了二阶离散自抗扰控制算法.引入Stribeck模型模拟稳定回路的摩擦力矩,仿真分析表明,自抗扰控制的稳定回路可有效抑制干扰、跟踪指令角速度,具有精度高、收敛快、鲁棒性强等特点.该控制算法具有一定的工程实用价值.  相似文献   

5.
陈志刚  阮晓钢  李元 《控制与决策》2019,34(6):1203-1210
针对立方体机器人动力学模型多变量、强耦合的问题,提出一种基于自抗扰控制的平衡控制器设计方法.引入虚拟控制量,并在控制量与输出向量之间并行地嵌入多个自抗扰控制器,从而实现对多变量系统的解耦控制,将系统的动态耦合和外部扰动视为各自通道上的自抗扰控制器的总扰动,在为期望姿态安排过渡过程基础上,设计扩张状态观测器对总扰动进行估计并实时补偿.综合采用经验试凑法和带宽法对控制器参数进行整定,对自抗扰控制器系统进行稳定控制、姿态跟踪、抗扰性和鲁棒性实验,并与PID控制系统进行定量对比分析.仿真结果表明,所设计的自抗扰控制器不仅能有效实现立方体机器人的平衡控制,而且较PID控制器具有更好的响应速度、控制精度和强鲁棒性.  相似文献   

6.
考虑输入受限的航天器安全接近姿轨耦合控制   总被引:1,自引:0,他引:1  
针对存在外部扰动和输入受限的航天器安全接近的问题,当扰动上界未知时,基于积分滑模控制理论设计了抗饱和的有限时间自适应姿轨耦合控制器.控制器的设计过程中采用了新型的避碰函数限制追踪航天器运动区域进而保证接近过程中航天器的安全性,同时通过辅助系统和自适应算法分别处理了输入受限和扰动上界未知.借助李雅普诺夫理论证明了在控制器的作用下系统状态在有限时间内收敛,且能够保证追踪航天器在实现航天器接近的过程中不与目标航天器发生碰撞.最后通过数字仿真进一步验证了所设计控制器的有效性.  相似文献   

7.
非合作交会对接的姿态和轨道耦合控制   总被引:1,自引:0,他引:1  
航天器与非合作目标进行交会对接时,要求控制器能保证二者不发生碰撞.然而,针对航天器非合作交会对接中的避碰问题,还没有成熟的控制策略.本文以服务航天器体坐标系为参考坐标系建立航天器相对姿态轨道耦合运动模型,利用滑模控制设计了一种姿态轨道耦合控制器实现交会对接.通过利用人工势函数理论和基于蔓叶线的虚拟障碍物模型,控制器可以严格地保证服务航天器运行在安全区域内部,避免与目标航天器碰撞.通过李雅普诺夫理论可以证明系统在控制器的作用下是渐近稳定的.数值仿真进一步说明了所提出的控制器的有效性.  相似文献   

8.
针对存在未知时变惯量不确定性、执行机构衰退故障和外部干扰力矩的非刚体航天器系统,研究了航天器自适应姿态跟踪容错控制问题,结合非线性鲁棒控制方法、自适应方法、容错控制理论和参数估计方法,提出了一种鲁棒自适应姿态跟踪容错控制器。所设计的控制器克服了执行器故障、惯量不确定性以及外界干扰对系统稳定性的影响,保证了航天器姿态及角速度能够跟踪上时变的期望状态,实现了跟踪误差系统最终一致有界稳定。最后通过数字仿真验证了所提方法的有效性,并且与已有方法进行了对比,说明了所提方法的优越性。  相似文献   

9.
本文介绍一种自抗扰pH控制方法.针对化工过程中pH值中和具有严重非线性,因而控制十分困难.当未知非线性系统中存在强干扰时,自抗扰控制器能表现出很强的适应性和鲁棒性.为此,采用二阶自抗扰控制器来控制这一复杂非线性过程,并结合工程实际和理论分析,对pH值中和过程进行仿真,相比传统PID控制,能达到理想控制效果.  相似文献   

10.
自抗扰PID四旋翼飞行器控制方法研究   总被引:2,自引:0,他引:2  
针对传统PID控制算法不能很好地适应非线性被控系统、鲁棒性较弱、抗扰能力差等缺点,提出了一种基于传统PID控制与自抗扰控制结合的四旋翼飞行器控制方法。在传统PID控制器的基础上,对飞行器姿态解算过程中的不确定因素和外界干扰予以实时的观测和补偿。最后在Simulink中分别搭建传统串级PID控制器和自抗扰PID控制器的仿真模型,通过分析仿真结果得出自抗扰PID控制器的响应时间比传统串级PID控制器快约30%,稳态误差较传统串级PID控制器降低约15%,超调量降低约20%。由此得出自抗扰PID四旋翼飞行器控制方法能够很好地适应四旋翼飞行器非线性系统,达到抑制外界干扰以及补偿系统控制误差的效果。  相似文献   

11.
针对小型四旋翼无人机飞行过程中姿态控制容易受侧向风干扰的问题,研究了一种自抗扰控制(ADRC)律.首先分析了侧向风对旋翼的推力,然后建立了风速的组合模型,利用自抗扰控制方法对风的干扰进行估计和补偿,最后在Matlab平台上对所提出的ADRC控制律进行仿真验证.从仿真结果看ADRC控制能够较好地对侧向风的干扰进行估计补偿,从而保证姿态控制具有较好的稳定性.  相似文献   

12.
本文针对一端受到范德华力的不稳定剪切梁方程,考虑其输入–状态稳定性问题.通过可逆变换把方程等价地变成一个具有反馈循环的2×2的一阶运输方程与常微分方程的耦合系统.通过自抗扰控制方法,给出具有时变增益的扩张状态观测器来估计干扰.应用Backstepping变换和干扰估计量,设计系统的反馈控制来补偿系统本身的不稳定以及消除匹配干扰.通过C0–半群方法证明闭环系统的适定性,以及Lyapunov方法证明闭环系统的输入–状态稳定性.数值仿真验证理论结果的正确性.  相似文献   

13.
This paper addresses the Mittag‐Leffler stabilization for an unstable time‐fractional anomalous diffusion equation with boundary control subject to the control matched disturbance. The active disturbance rejection control (ADRC) approach is adopted for developing the control law. A state‐feedback scheme is designed to estimate the disturbance by constructing two auxiliary systems: One is to separate the disturbance from the original system to a Mittag‐Leffler stable system and the other is to estimate the disturbance finally. The proposed control law compensates the disturbance using its estimation and stabilizes system asymptotically. The closed‐loop system is shown to be Mittag‐Leffler stable and the constructed auxiliary systems in the closed loop are proved to be bounded. This is the first time for ADRC to be applied to a system described by the fractional partial differential system without using the high gain.  相似文献   

14.
夏超英  郭海宇 《控制与决策》2015,30(12):2293-2297

针对无刷双馈电机非线性强耦合特性, 提出一种实现其高性能控制的自抗扰控制方法. 在控制电机同步坐标系下, 设计磁链自抗扰控制器和转速自抗扰控制器, 对系统内部的耦合影响和系统外部扰动进行观测和补偿, 实现非线性系统线性化控制. 该控制器具有较强的鲁棒性, 且不依赖电机模型. 仿真对比结果表明, 自抗扰控制器能够准确地估计和补偿系统的内外扰动, 控制精度高, 抗扰能力强, 能够实现磁链和电磁转矩的解耦, 进而实现磁链和转速相互独立控制, 是一种简单有效的高性能控制方法.

  相似文献   

15.
钟声  黄一  胡锦昌 《控制理论与应用》2019,36(12):2027-2033
本文针对一种带有挠性附件和液体晃动的深空探测航天器姿态控制问题,提出了自抗扰控制律.该控制律可以自主、有效地抑制挠性附件弹性振动和液体晃动对姿态角运动的耦合作用以及处理大范围的扰动和系统不确定性.基于四元数生成角速度跟踪指令,把控制问题由姿态角控制转化为角速度控制.通过设计扩张状态观测器实时估计并补偿角速度通道总扰动并结合角速度偏差反馈,使得角速度快速跟踪指令,进而实现控制目标.仿真结果验证了控制律的有效性和鲁棒性.  相似文献   

16.
针对传统PID在控制高速精密离心机系统时难以满足其高动态过程的要求,对系统目标过渡过程进行安排并设计了自抗扰控制器.所提出的自抗扰控制器包括3个部分:跟踪微分器、扩张状态观测器和误差反馈控制器.由于离心机在启动和制动阶段,系统状态会经历一个快速变化的过程,所以在离心机系统动态变化阶段采用跟踪微分器对目标函数进行过渡过程安排,防止系统出现过大超调;并且设计了扩张状态观测器对系统未知干扰进行估计和补偿;补偿后采用误差反馈控制器实现离心机系统高动态过程的跟踪控制.最后通过对自抗扰控制进行参数整定,使得系统满足所提出的各项性能指标要求.仿真结果验证了相比于传统PID控制,所提出的自抗扰控制器在超调量,调节时间以及稳态控制精度等性能指标上具有优越性.  相似文献   

17.
艾海平  陈力 《控制与决策》2021,36(2):355-362
讨论空间机器人在轨捕获非合作航天器过程避免关节受冲击力矩破坏的避撞柔顺控制问题.在机械臂与关节电机之间配置一种弹簧类柔顺装置—–旋转型串联弹性执行器(RSEA),其作用在于:1)在捕获碰撞阶段,可通过其内置弹簧的变形吸收碰撞产生的能量;2)在镇定运动阶段,结合避撞柔顺策略适时开、关电机,以保证关节所受冲击力矩受限在安全...  相似文献   

18.
张岱峰  罗彪  梅亮 《测控技术》2015,34(12):62-65
针对四旋翼无人机强耦合、非线性的控制难点,研究设计了一种基于自抗扰控制和比例微分控制的双闭环控制器。首先,分析了小型四旋翼飞行器动力学模型,确定四旋翼无人机的六自由度方程。然后,利用自抗扰控制技术对强耦合、非线性的姿态模型进行了解耦,设计扩张状态观测器对其总扰动进行观测与补偿。其次,设计比例微分控制器对解耦后的系统进行位置跟踪,从而与姿态控制器组成双闭环系统。最后,通过仿真及试飞实验测试系统性能。仿真和试飞结果表明该系统能够完成对控制指令的实时跟踪,并且对干扰具有极强的抑制力。  相似文献   

19.
二自由度无人直升机的非线性自抗扰姿态控制   总被引:1,自引:0,他引:1  
王怡怡  赵志良 《自动化学报》2021,47(8):1951-1962
无人机高性能姿态控制的难题之一是无人机系统模型通常无法精确建立且受到复杂外部干扰的作用. 针对这一难题, 本文提出了二自由度无人直升机姿态控制的非线性自抗扰控制设计方法. 该方法的主要思想是将系统内部的未建模动态和外部干扰等不确定性因素作为“总扰动”, 利用输入输出信息在线观测, 并在反馈控制环节对其进行补偿. 本文发展了非线性扩张状态观测器与非线性反馈控制律用以提高控制品质. 本文严格证明了控制闭环系统的稳定性和收敛性, 并通过数值仿真验证了理论结果的有效性. 数值结果显示当量测输出受噪音干扰时本文提出的方法优于线性自抗扰控制方法和滑模控制方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号