共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
《吉林大学学报(工学版)》2017,(4):1244-1252
首先,构造出能获得更丰富人体行为信息的四级图像序列结构,并分别用卷积神经网络进行处理,从而得到包含表观、运动、前景和背景信息的特征。然后,提出了一种对视频中行为进行分解的方法,将完整行为分解为由粗略到细致的子行为,从而得到更细致的人体行为描述,获取到更具代表性的行为特征。最后,通过两个行为数据集上的验证及对比实验证明了该方法可有效提高行为识别的准确度。 相似文献
3.
4.
通过观测水体中海藻的种类和数量对水质的影响,达到预防藻类污染和检测水质好坏的 目的.基于改进卷积神经网络与深度学习 目标检测模型相结合的方法对藻类图像的大小、形态等特征进行提取与训练,实现藻类图像的识别分类.实验结果表明,运用改进的卷积神经网络和目标检测模型使得藻类识别的平均准确率达到95%以上,有效避免了过拟合的现象.该方法用于水质检测可以有效地解决由于人工识别分类带来的误差,减少人力输出,提高效率. 相似文献
5.
将卷积神经网络的单通道全连接层改为双通道,构建并训练了一个新的双通道卷积神经网络模型以增强模型的特征表达能力。在全连接层用Maxout激活函数代替传统的ReLU激活函数以优化网络内部结构。在网络训练过程中,采用A-Softmax损失,使卷积神经网络能够学习角度判别特征。改进后的卷积神经网络模型在FER2013数据集上准确率为73.6%。 相似文献
6.
采用3 000张玉米种子图像进行基于卷积神经网络的玉米单倍体种子识别,包含1 230张单倍体玉米种子图像和1 770张二倍体玉米种子图像。为对比不同卷积神经网络模型在单倍体玉米种子识别的效果,使用VGG、ResNet、DenseNet和SKNet等经典模型,并对SKNet模型进行改进,将其降维升维全连接层设计为一维卷积以降低模型参数数量,改进后的SKNet称为ECA_SKNet。对5种模型使用相同优化器和训练周期进行实验,结果表明:实验模型均能对单倍体玉米种子达到较好的识别效果,最低准确率能达88.5%,ECA_SKNet模型准确率达93.04%。可见,卷积神经网络在玉米单倍体种子识别中能够发挥重要作用,为作物种子识别提供新思路。 相似文献
7.
面向助老行为识别的三维卷积神经网络设计 总被引:1,自引:0,他引:1
针对室内老人跌倒问题,提出一种室内人体跌倒行为识别方法.首先,提出基于卷积核分解与分组卷积的轻量化3D网络;之后融合浅层2D子网络与轻量化3D子网络,并采用随机滑动组合采样策略改进3D卷积行为识别网络.为进一步提高网络泛化性能,对视频帧进行视觉显著性检测,通过加强背景纹理与人物行为之间关联性提高真实场景识别准确度.实验结果表明:该网络参数量为6.9×106,时间复杂度降低至8.04×109;实现算法在室内跌倒行为识别任务上达到81.5%的准确度. 相似文献
8.
传统的人脸表情识别方法需要人为指定特征训练方向,卷积神经网络方法虽然可以自动训练分类特征,但是存在无法识别表情序列的弊端.针对此问题,运用一种多网络融合技术,使构建的网络能够对表情序列进行识别.网络构建方法为:首先构建多个卷积神经网络,使每个网络处理一帧图片;然后将处理结果在融合层进行融合;最后通过一个分类器输出识别结果.在CK+人脸表情数据库上,分别对3帧、4帧和5帧表情序列进行实验,均获得了较高的识别率. 相似文献
9.
10.
针对传统机器学习方法在人脸表情识别上存在特征提取繁琐、表情识别准确率不高的问题,提出一种基于深度学习的人脸表情自动识别方法.设计了一个卷积神经网络模型,以原始图像数据为输入,中间以卷积层和池化层交替作为隐层进行特征自动提取,最后将提取到的特征数据映射到全连接层,并采用Softmax函数作为分类器计算分类得分概率,实现人脸表情的自动识别分类.在公开的人脸表情数据集CK+上进行实验,结果表明本文方法能更准确地识别人脸表情. 相似文献
11.
贾振堂 《上海电力学院学报》2018,34(2):185-190
为了对车辆款式和型号进行分类筛选,降低侦查人员的劳动强度,提出了一种用约束卷积神经网络实现轿车款式识别的方法,相比车辆类型识别更为精细。首先通过测试进行正面"车脸"的识别,然后尝试整车车身(并带有部分背景)的识别。测试结果表明,对于包含部分背景内容的整车车身识别,在卷积神经网络中添加约束条件后,误识别率有4.06%的降幅,从而验证了该方法的有效性。 相似文献
12.
In order to accomplish the task of object recognition in natural scenes, a new object recognition algorithm based on an improved convolutional neural network(CNN) is proposed. First,candidate object windows are extracted from the original image. Then, candidate object windows are input into the improved CNN model to obtain deep features. Finally, the deep features are input into the Softmax and the confidence scores of classes are obtained. The candidate object window with the highest confidence... 相似文献
13.
为了提高手写体数字的识别率,在AlexNet网络模型的基础上进行改进,引入Inception-resnet模块替换模型中的Conv3和Conv4来提升模型的特征提取能力;使用批归一化处理(BN)方法加快网络的收敛速度,防止过拟合;减少卷积核的数量,提升网络的训练速度。在MNIST数据集上进行训练与测试,实验结果表明改进的网络模型具有较高的检测精度,达到了0.9966,证明了本算法的有效性。 相似文献
14.
针对真实场景下采集的人脸图像受环境、设备影响导致分辨率低且图像识别率较低的问题,应用深度学习技术,提出一种基于卷积神经网络(CNN)和主成分分析(PCA)的低分辨率人脸识别算法.首先利用图像超分辨率重构将低分辨率图像重建为高分辨率图像;其次利用CNN提取重建后人脸图像特征,对损失函数进行优化;再利用PCA对特征进行降维,得到更优的分类特征;最后利用支持向量机(SVM)、向量间距离等算法筛选出最优人脸分类并计算准确率.实验表明,该算法在LFW和FERET上均取得更好的识别效果,当人脸图像分辨率下降到8×8时,准确率仍能到达94.5%,优于其他算法并且降低了运算时间. 相似文献
15.
提出了一种基于卷积神经网络的3D人体特征识别算法。首先,获取训练数据,具体包括数据的去冗余、3D到2D的投影以及人体局部区域图像的获取。然后,根据局部图像的大小,设计神经网络的结构,并进行参数初始化,对网络进行训练,通过调整网络参数提高网络的准确度。基于训练好的网络,通过对人体自上而下的扫描获取的人体局部图像进行特征识别并获取其对应的特征概率,通过阈值以及特征变化判定出特征出现在人体的的相对位置。然后,使用最小二乘拟合将经过该位置的横向切面与3D人体模型相交的二维点离散坐标点进行闭合曲线拟合,计算出人体各部位的尺寸。最后将测试结果与标准测量结果进行比较,计算出误差值。仿真实验结果表明,通过该方法可以较好的实现对各种差异性3D扫描人体模型的特征识别。 相似文献
16.
针对废旧手机回收过程中型号难以精确识别的问题,提出一种基于孪生卷积神经网络的废旧手机型号识别方法.首先,利用基于最大类间差分的边缘检测算法解析手机图像的区域特征,构建手机型号识别数据库;其次,构造一种共享权值孪生卷积网络(siamese convolutional neural network,S-CNN)的手机识别模型,实现废旧手机图像特征的快速提取;最后,设计一种自适应学习率的识别模型参数更新策略,提高手机型号识别的精度.将其应用于不同场景下废旧手机的分拣,实验结果表明该方法具有较好的快速性和准确性. 相似文献
17.
针对不同轨道角动量(OAM)叠加的涡旋光束探测问题,提出了基于机器学习的模式识别技术,为OAM叠加光束的检测提供了一个新思路.基于修正的von Karman功率谱模型,利用功率谱反演法生成随机相位屏,应用多步衍射法数值模拟拉盖尔高斯叠加光束在大气湍流信道的传输.研究了不同波长、传输距离和大气湍流信道条件下训练的卷积神经网络(CNN)分别对各种湍流强度测试集的识别正确率.结果表明:对于较弱的湍流、波长较长的OAM光束和较短的传输距离条件,基于CNN的OAM模式识别正确率较高;对于各种湍流条件的测试数据,使用强湍流训练集训练得到的模型与使用弱湍流训练集训练得到的模型相比识别正确率更高;利用混合训练集进行训练有利于提高识别正确率.这些结果对OAM光束解复用系统的实现具有一定的参考价值. 相似文献
18.
为了解决车辆管控工作中出现的肇事车辆逃避交通监管的问题,对数据集处理方式和局部特征的车型分类算法进行研究.首先,以AlexNet网络为基础分析了各个网络结构对于输入图片的敏感程度,从网络层数和卷积核尺寸上进行网络优化得出IM-AlexNet网络.然后,使用数据增强方式处理后的自建数据集,训练IM-AlexNet分类模型网络.最后,在HOG-SVM、GoogleNet和VGG16三种模型上进行对比实验并分析.实验结果表明:IM-AlexNet网络在验证集上准确率达到96%左右,损失值低于0.2,训练速度达到3 s/step.在混淆矩阵中IM-AlexNet网络模型总体准确率达到69%,完成了局部特征对车型分类的实验,分类准确率大大提高. 相似文献
19.
朱墨的时序检测在文件检测和司法公正领域中是较为常见的问题.由于判定结果的准确性无法准确衡量,提出了基于卷积神经网络快速识别朱墨时序的方法.基于不同时序的朱墨样本在朱墨重叠处图像色素点的区别,用卷积神经网络做有监督训练分类,最终达到识别图像朱墨顺序的 目的.在理想的实验条件下,同一支笔的预测准确率能达到93%以上,泛化能力高达86%.在加入高斯噪声后,同一支笔的预测准确率仍能达到82%以上,泛化能力达到80%,大幅度提高了朱墨时序图像识别的准确性和稳定性. 相似文献