首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes the design concept of the human assistant robot I-PENTAR (Inverted PENdulum Type Assistant Robot) aiming at the coexistence of safety and work capability and its mobile control strategy. I-PENTAR is a humanoid type robot which consists of a body with a waist joint, arms designed for safety, and a wheeled inverted pendulum mobile platform. Although the arms are designed low-power and lightweight for safety, it is able to perform tasks that require high power by utilizing its self-weight, which is the feature of a wheeled inverted pendulum mobile platform. I-PENTAR is modeled as a three dimensional robot; with controls of inclination angle, horizontal position, and steering angle to achieve high mobile capability. The motion equation is derived considering the non-holonomic constraint of the two-wheeled mobile robot, and a state feedback control method is applied for basic mobile controls wherein the control gain is calculated by the LQR method. Through several experiments of balancing, linear running, and steering, it was confirmed that the robot could realize stable mobile motion in a real environment by the proposed controller.  相似文献   

2.
This paper focuses on the H model reference tracking control for a switched linear parameter-varying (LPV) model representing an aero-engine. The switched LPV aero-engine model is built based on a family of linearized models. Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem. Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.   相似文献   

3.
This paper focuses on the H output feedback control problem of linear time-invariant fractional-order systems over finite frequency range. Based on the generalized Kalman-Yakubovic-Popov (KYP) Lemma and a key projection lemma, a necessary and sufficient condition is established to ensure the existence of the H output feedback controller over finite frequency range, a desirable property in control engineering practice. By using the matrix congruence transformation, the feedback control gain matrix is decoupled and further parameterized by a scalar matrix. Two iterative linear matrix inequality algorithms are developed to solve this problem. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.   相似文献   

4.
考虑一种电机驱动的单连杆机械臂系统在受到输出约束时的自适应有限时间H∞跟踪控制问题.一个有限时间有界H∞性能的新概念被提出,并结合障碍Lyapunov函数(BLF)、神经网络自适应技术、有限时间控制理论和H∞控制理论,提出了一种该系统在输出受限条件下的自适应神经有限时间有界H∞跟踪控制器设计方法,避免了许多有限时间控制...  相似文献   

5.
This paper designs a decentralized resilient H load frequency control (LFC) scheme for multi-area cyber-physical power systems (CPPSs). Under the network-based control framework, the sampled measurements are transmitted through the communication networks, which may be attacked by energy-limited denial-of-service (DoS) attacks with a characterization of the maximum count of continuous data losses (resilience index). Each area is controlled in a decentralized mode, and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area. Then, the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances. Under this modeling, a decentralized resilient H scheme is presented to design the state-feedback controllers with guaranteed H performance and resilience index based on a novel transmission interval-dependent loop functional method. When given the controllers, the proposed scheme can obtain a less conservative H performance and resilience index that the LFC system can tolerate. The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.   相似文献   

6.
This study is concerned with the H control for the full-envelope unmanned aerial vehicles (UAVs) in the presence of missing measurements and external disturbances. With the dramatic parameter variations in large flight envelope and the locally overlapped switching laws in flight, the system dynamics is modeled as a locally overlapped switched polytopic system to reduce designing conservatism and solving complexity. Then, considering updating lags of controller's switching signals and the weighted coefficients of the polytopic subsystems induced by missing measurements, an asynchronous H control method is proposed such that the system is stable and a desired disturbance attenuation level is satisfied. Furthermore, the sufficient existing conditions of the desired switched parameter-dependent H controller are derived in the form of linear matrix inequality (LMIs) by combining the switched parameter-dependent Lyapunov function method and average dwell time method. Finally, a numerical example based on a highly maneuverable technology (HiMAT) vehicle is given to verify the validity of the proposed method.   相似文献   

7.
The H2 guaranteed cost control problem for a singularly perturbed norm-bounded uncertain system is addressed using the quadratic stabilizability framework. After defining the corresponding slow and fast uncertain subsystems, the set of quadratic stabilizing composite controls is characterized. Two Riccati equations have to be solved, one for the slow subsystem and the other for the fast subsystem. Choosing appropriately the weighting matrices, it is shown how to pick up in the set of quadratic stabilizing composite controls, a control minimizing an upper bound on the H2 norm of a certain transfer matrix. The case of the guaranteed cost control problem for the reduced system is also investigated  相似文献   

8.
Distributed control of spatially invariant systems   总被引:2,自引:0,他引:2  
We consider distributed parameter systems where the underlying dynamics are spatially invariant, and where the controls and measurements are spatially distributed. These systems arise in many applications such as the control of vehicular platoons, flow control, microelectromechanical systems (MEMS), smart structures, and systems described by partial differential equations with constant coefficients and distributed controls and measurements. For fully actuated distributed control problems involving quadratic criteria such as linear quadratic regulator (LQR), H2 and H, optimal controllers can be obtained by solving a parameterized family of standard finite-dimensional problems. We show that optimal controllers have an inherent degree of decentralization, and this provides a practical distributed controller architecture. We also prove a general result that applies to partially distributed control and a variety of performance criteria, stating that optimal controllers inherit the spatial invariance structure of the plant. Connections of this work to that on systems over rings, and systems with dynamical symmetries are discussed  相似文献   

9.
This paper investigates the problem of path tracking control for autonomous ground vehicles(AGVs),where the input saturation,system nonlinearities and uncertainties are considered.Firstly,the nonlinear path tracking system is formulated as a linear parameter varying(LPV) model where the variation of vehicle velocity is taken into account.Secondly,considering the noise effects on the measurement of lateral offset and heading angle,an observer-based control strategy is proposed,and by analyzing th...  相似文献   

10.
This study introduces a mixed H2/H fuzzy output feedback control design method for nonlinear systems with guaranteed control performance. First, the Takagi-Sugeno fuzzy model is employed to approximate a nonlinear system. Next, based on the fuzzy model, a fuzzy observer-based mixed H2/H controller is developed to achieve the suboptimal H2 control performance with a desired H disturbance rejection constraint. A robust stabilization technique is also proposed to override the effect of approximation error in the fuzzy approximation procedure. By the proposed decoupling technique and two-stage procedure, the outcome of the fuzzy observer-based mixed H2/H control problem is parametrized in terms of the two eigenvalue problems (EVPs): one for observer and the other for controller. The EVPs can be solved very efficiently using the linear matrix inequality (LMI) optimization techniques. A simulation example is given to illustrate the design procedures and performances of the proposed method  相似文献   

11.
研究了高阶离散多智能体系统的在参数不确定和带外部干扰下的H鲁棒一致性控制问题,同时提出线性分布式一致性协议.首先将该问题转化为一组不确定系统的H鲁棒控制问题.其次推导出线性矩阵不等式在参数为γ的H鲁棒一致性意义下的充分条件.第三,给出了所提出一致性协议在不带外部干扰,参数不确定的高阶离散线性多智能体系统中的收敛效果.最后,通过包含和不包含参数不确定系统的对比仿真实验说明了理论结果的正确性和有效性.  相似文献   

12.
研究了一类带Poisson跳扩散过程的线性二次随机微分博弈,包括非零和博弈的Nash均衡策略与零和博弈的鞍点均衡策略问题.利用微分博弈的最大值原理,得到Nash均衡策略的存在条件等价于两个交叉耦合的矩阵Riccati方程存在解,鞍点均衡策略的存在条件等价于一个矩阵Riccati方程存在解的结论,并给出了均衡策略的显式表达及最优性能泛函值.最后,将所得结果应用于现代鲁棒控制中的随机H2/H控制与随机H控制问题,得到了鲁棒控制策略的存在条件及显式表达,并验证所得结果在金融市场投资组合优化问题中的应用.  相似文献   

13.
Robust performance analysis for linear time-invariant systems with linear fractional transformation real parametric uncertainty is considered. New conditions of robust stability/performance based on parameter-dependent Lyapunov functions are proposed. The robust stability/performance measures are: robust pole location, robust H performance and robust H2 performance. Linear matrix inequality (LMI)-based sufficient conditions for the existence of parameter-dependent Lyapunov functions are derived by using the quadratic separation concept. The performances of the proposed conditions are compared with existing tests  相似文献   

14.
This paper is concerned with the finite horizon Hinfin full-information control for discrete-time systems with multiple control and exogenous input delays. We first establish a duality between the Hinfin full-information control and the H2 smoothing of a stochastic backward system in Krein space. Like the duality between the linear quadratic regulation (LQR) of linear systems without delays and the Kalman filtering, the established duality allows us to address complicated multiple input delay problems in a simple way. Indeed, by applying innovation analysis and standard projection in Krein space, in this paper we derive conditions under which the Hinfin full-information control is solvable. An explicit controller is constructed in terms of two standard Riccati difference equations of the same order as the original plant (ignoring the delays). As special cases, solutions to the Hinfin state feedback control problem for systems with delays only in control inputs and the Hinfin control with preview are obtained. An example is given to demonstrate the effectiveness of the proposed Hinfin control design  相似文献   

15.
This paper addresses the dynamic output feedback control problem of continuous-time Markovian jump linear systems. The fundamental point in the analysis is an LMI characterization, comprising all dynamical compensators that stabilize the closed-loop system in the mean square sense. The H2 and H-norm control problems are studied, and the H2 and H filtering problems are solved as a by product  相似文献   

16.
郭天姣  涂俐兰 《自动化学报》2020,46(6):1229-1239
针对具有噪声的相互依存复杂动力网络, 本文研究了它的局部自适应H异质同步问题.该网络由两个具有"一对一"相互依赖关系的子网构成, 子网内部耦合和子网间的耦合均含有未知但有界的非线性函数.基于李雅普诺夫稳定性理论、线性矩阵不等式(Linear matrix inequality, LMI)技术和自适应以及H控制方法, 本文提出了使得相互依存网络在外部噪声的干扰下, 两个子网各自达到一致的充分条件.这些条件不仅可以保证受扰动的网络获得鲁棒渐近同步而且可以让网络达到一个给定的鲁棒H水平.最后的数值模拟验证了提出的方法的有效性以及可行性.  相似文献   

17.
This paper is devoted to investigate the robust H sliding mode load frequency control (SMLFC) of multi-area power system with time delay. By taking into account stochastic disturbances induced by the integration of renewable energies, a new sliding surface function is constructed to guarantee the fast response and robust performance, then the sliding mode control law is designed to guarantee the reach ability of the sliding surface in a finite-time interval. The sufficient robust frequency stabilization result for multi-area power system with time delay is presented in terms of linear matrix inequalities (LMIs). Finally, a two-area power system is provided to illustrate the usefulness and effectiveness of the obtained results.   相似文献   

18.
The authors present a new method to compute solutions to the general multiblock l1 control problem. The method is based on solving a standard H2 problem and a finite-dimensional semidefinite quadratic programming problem of appropriate dimension. The new method has most of the properties that separately characterize many existing approaches. In particular, as the dimension of the quadratic programming problem increases, this method provides converging upper and lower bounds on the optimal l1 norm and, for well posed multiblock problems, ensures the convergence in norm of the suboptimal solutions to an optimal l1 solution. The new method does not require the computation of the interpolation conditions, and it allows the direct computation of the suboptimal controller  相似文献   

19.
This paper presents two filter design methods for discrete time fuzzy dynamic systems based on a piecewise quadratic Lyapunov function. It is shown that the resulting filtering error system is globally stable with guaranteed Hinfin or generalized H2 performance and the filter gains can be obtained by solving a set of linear matrix inequalities. Two simulation examples are also given to illustrate the performance of the proposed approaches.  相似文献   

20.
A PID-type controller incorporating neural network elimination scheme and sliding-mode control action for different objectives including H2 tracking performance, H tracking performance, and regional pole constraints is developed in robotic systems under plant uncertainties and external disturbances. The adaptive neural networks are used to compensate the plant uncertainties. The sliding-mode control action is included to eliminate the effect of approximation error via neural network approximation. The sufficient conditions are developed for different objectives in terms of linear matrix inequality (LMI) formulations. The interesting combinations of different objectives are considered in this paper, which include H PID tracking control design with regional pole constraints and mixed H2/H PID tracking control design with regional pole constraints. These multiobjective PID control problems are characterized in terms of eigenvalue problem (EVP). The EVP can be efficiently solved by the LMI toolbox in Matlab. The proposed methods are simple and the PID control gain for different objectives can be obtained systematically  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号