首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
介绍了一种综合利用无线激光通信技术、无线激光传能技术设计的无线激光携能通信系统,给出了系统结构和原理,结合光电信号转换、光电能量转换电路,设计了通信、传能一体化的硬件电路和光路结构,能实现近距离无连接、非接触的双向通信、传能,为无连接、无供电条件设备接入提供了分离脱落连接器(又称脱插连接器)之外的解决方案,最后指出系统继续研究发展面临的问题和挑战。  相似文献   

2.
为了实现高效率激光无线能量传输系统的研究,基于Simulink建立了激光无线能量传输系统的闭环控制仿真模型,实现了激光光伏阵列的最大功率点追踪、降压电路搭建和锂电池智能充电控制,并结合激光光伏阵列的输出特性和锂电池多阶段恒流充电方法的特性,提出了一种基于激光功率密度闭环信号控制的新型锂电池多阶段恒流充电方法.结果表明,...  相似文献   

3.
乔良  杨雁南 《激光技术》2014,38(5):590-594
为了提高激光无线能量传输系统的转换效率,基于单结GaAs光电池的工作原理,用调节照射光电池的激光参量的方法,从理论上对激光无线能量传输系统的有关部分进行了优化设计,并通过实验研究了激光波长、激光强度等因素对光电池能量转换效率的影响。结果表明,单结GaAs光电池对单色激光的光电转换效率远高于传统的单晶硅电池,最高转化效率可达61.2%。该结果对于激光无线能量传输技术的应用具有一定参考价值。  相似文献   

4.
为了解决无人机工作时间短、续航能力差的问题,采用激光无线供能的方式给无人机进行续航,提出并设计了一套基于跟踪、捕获、瞄准的激光无线能量供给系统,并进行了理论分析,同时在外场200m范围内进行了无人机激光无线供能实验。结果表明,该系统整体光电转换效率约为12%,跟踪精度优于500μrad。该研究为激光跟踪与无线供能技术用于小型航天飞行器提供了参考。  相似文献   

5.
霍虹宇  苟于单  杨擎东  李娟  赵邦博  杨火木  王俊 《红外与激光工程》2021,50(12):20210102-1-20210102-9
激光无线能量传输中,激光光强分布不均匀和激光光斑与光电池形状不匹配会导致系统光电转换效率降低,局部温度过高,极端条件下甚至对光电池造成损伤。基于分布式匀化思想设计了一种激光接收装置,首先用光学整形扩散片在光电池各子区域进行光束初次匀化,然后用光学漏斗进行二次匀化和整形。针对1 cm×1 cm光电池,分析了光学整形扩散片的扩散角度和光学漏斗的高度对光束匀化效果的影响,优化后的激光接收装置的耦合效率ηc>95%,光强不均匀度Δ<0.05。此外,该激光接收装置对激光入射角不敏感,入射角为20°时,ηc>80%。搭建了3×3光电池芯片阵列的激光无线输能系统,采用分布式匀化激光接收装置,光强不均匀度由0.34降到0.12,光电池转换效率提升了65%。与正入射时相比,入射角为18°时,系统转换效率变化小于20%。结果表明,该分布式匀化激光接收装置有效提高了接收端的光强均匀性和系统光电转换效率,且对激光入射角不敏感,在激光无线能量传输中有重要作用。  相似文献   

6.
无人机激光无线能量传输及跟踪瞄准方法研究   总被引:1,自引:0,他引:1  
本文介绍了无人机的特点与发展趋势,针对小型无人机能量供给不足的问题,阐述了激光无线能量传输的现状,在此基础上总结了无人机激光无线能量传输的系统结构,分析了无人机激光无线能量传输系统的效率及影响因素,并提出了一种基于协作目标的捕获跟踪瞄准方法。  相似文献   

7.
设计、搭建了一套激光无线能量传输(LWPT)实验平台,它以808 nm的激光照射硅电池实现无线电能传输,以CN3791芯片进行后级储能电源管理,将LWPT应用于锂电池储能.对光电池激光照射下输出特性探究发现,随着入射激光功率密度增大,短路电流线性增大,开路电压缓慢趋近饱和,光伏转换效率增加到峰值10.98%后出现下降趋...  相似文献   

8.
庄永峰  华磊  郭豹 《红外》2014,35(12):35-40
针对远距离激光传能及光电转换问题,通过对传输过程中光纤损耗、波长选择、光电转换材料匹配等影响系统传输效率的各环节因素进行分析,采用在半绝缘InP衬底上外延生长InGaAs PIN的方式设计了光电转换芯片,并对芯片结构及互联工艺进行了优化,最终成功研制出了高效激光能量转换器。试验结果表明,在1550 nm激光照射的条件下,该激光能量转换器的光电转换效率能够达到28%。  相似文献   

9.
无线能量传输技术包括微波无线能量传输与激光无线能量传输(LWPT)两种技术途径。介绍了LWPT技术的基本概念,综述了LWPT技术的国内外发展历史和现状,分析了LWPT技术的主要研究内容,预测了LWPT技术的发展方向和可能的应用。对比国内外情况可知,国内LWPT研究还处于理论和应用初期,需要更多地投入推动其发展进步。  相似文献   

10.
作为最具代表性的定向能载体,激光可用于高功率、长距离的无线能量传输。传统上激光无线传能一般通过跟瞄系统实现,而近年来发展的谐振激光自适应无线传能技术提供了一种无需跟瞄的新解决思路,受到广泛关注。文中分析比较了这两种方法的特点,展望了未来发展趋势,并对后者的核心免调试激光器的实现方法进行了总结。  相似文献   

11.
用于激光无线能量传输的MPPT集成仿真系统   总被引:1,自引:0,他引:1       下载免费PDF全文
杨擎东  杨火木  王俊  苟于单  汪莎  周寿桓 《红外与激光工程》2022,51(5):20210522-1-20210522-9
在激光无线能量传输(LWPT)中,传能激光波长、光功率和光电池温度对光电池的输出特性有显著影响,最大功率跟踪(MPPT)技术可解决上述等因素造成的功率失配问题,提升系统的DC-DC效率。构建了针对LWPT的MPPT集成仿真系统,耦合了波长、光功率和温度对GaAs光电池输出特性的综合影响,可以同时分析光电池在功率匹配、功率失配和MPPT调制等多种条件下的输出特性。基于该仿真系统,研究了光电池在不同波长、光功率和温度条件下的物理规律。波长增大时,在850 nm左右转换效率ηmax达到最大值为50%,波长继续增大,光子能量小于GaAs禁带宽度导致ηmax迅速下降。功率增大时,ηmax基本不变,最大功率匹配电阻RLmax减小。温度升高时,ηmax和RLmax均持续下降。此外,研究了光电池在功率失配时的输出特性,此时光电池的转换效率对比功率匹配时均有不同程度的下降。根据光电池的输出特性在仿真系统设计了MPPT电路,利用时间扰动算法进行最大功率跟踪。光电池在MPPT系统调制后均可工作在功率匹配时的最大功率点,且光电池能源利用率达到99.93%。研究结果对用于激光输能有重要指导意义。  相似文献   

12.
13.
用于无线能量传输的高效率半导体激光器设计   总被引:1,自引:1,他引:1       下载免费PDF全文
李娟  俞浩  虞天成  苟于单  杨火木  王俊 《红外与激光工程》2021,50(5):20210147-1-20210147-8
激光无线能量传输在无人机、卫星空间站和探月机器人供电等方面具有潜在应用前景,其系统效率成为了其应用的关键瓶颈。为了提高激光无线能量传输系统发射端激光器的电光转换效率、接收端光斑均匀性和有效窗口收光比,提出了用于激光无线能量传输发射端的高效率半导体激光器设计方案。基于合束效率较高的空间合束设计了一套高功率高效率半导体激光系统,接收端光斑不均匀度可优化至0.207,有效窗口内收光比大于94%。搭建了千瓦级激光无线能量传输实验装置,发射端半导体激光系统直接输出矩形光斑,与矩形光电池匹配,提高了电池阵布片率。利用多光束指向性可调节特点,优化了接收端光斑均匀度,有利于提高接收端电池的转换效率及简化电源管理。该设计与研究为激光无线能量传输的实际应用提供了借鉴意义。  相似文献   

14.
无线激光图像传输收发电路的设计与实现   总被引:1,自引:0,他引:1  
设计并实现了激光发射与接收电路模块,每个模块主要由激光收发电路、数据处理器、存储器和视频转换电路等4部分组成,具有体积小、使用灵活的特点.重点介绍了622 Mbit/s高速激光收发电路的设计.研究并实现了对视频数据流的时序控制,如有效图像数据的提取与重新组合、存储等,采用曼彻斯特编码保证了激光信号接收与时钟恢复的稳定.在使用一组简易光学天线的情况下,理论通信距离大于6 km,并成功地完成了距离大于100 m的实验.结果表明:该系统可以稳定地传输图像,适合地面短距离高速接入等应用,为进一步研究无线激光通信技术提供了实验平台.  相似文献   

15.
F6系统无线电能传输的优化分析   总被引:1,自引:0,他引:1  
实现航天器模块之间的电能传输,对未来卫星的设计将产生重要的影响,而无线电能传、技术被认为是F6(分离模块)系统中成熟度最低的技术.采用电流型谐振耦合传输系统,研究了系统的电能传输效率特性,提出了加入阻抗变换电路来改变负载等效阻抗的方法,改善了系统的电能传输效率.  相似文献   

16.
无线电能传输是一种利用近场感应将能量传送的技术。电感耦合型无线电能传输存在一些关键问题有待解决,如:转化效率低,充电过程中产生环境电磁污染等缺点。本论文探索了方波触发下输电转化效率随频率和占空比的变化规律,设计出可调频率、可调占空比的磁共振式无线充电装置,该装置具有电能转化效率最高模式和充电输出功率最大模式双重功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号