首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The routine availability of key component materials has been highlighted as a potential constraint to both extensive deployment and reduction in production costs of thin‐film photovoltaic (PV) technologies. This paper examines the effect of material availability on the maximum potential growth of thin‐film PV by 2050 using the case of tellurium (Te) in cadmium telluride (CdTe) PV, currently the dominating thin‐film technology with the lowest manufacturing cost. The use of system dynamics (SD) modelling allows for a dynamic treatment of key Te supply features and prospects for reductions in PV demand via material efficiency improvements, as well as greater transparency and a better understanding of future recycling potential. The model's projections for maximum Te‐constrained CdTe PV growth by 2050 are shown to be higher than a number of previous studies using static assumptions—suggesting that a dynamic treatment of the resource constraints for CdTe inherently improves the outlook for future deployment of this technology. In addition, the sensitivity analysis highlights certain complex correlations between the maximum potential CdTe growth by 2050 and the rated lifetime of PV modules as well as the reported size of global Te resources. The highest observed sensitivities are to the recovery rate of Te from copper anode slimes, the active layer thickness, the module efficiency and the utilisation rate of Te during manufacturing, all of which are highlighted as topics for further research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Crystalline silicon solar module manufacturing cost is analysed, from feedstock to final product, regarding the equipment, labour, materials, yield losses and fixed cost contributions. Data provided by European industrial partners are used to describe a reference technology and to obtain its cost breakdown. The analysis of the main cost drivers allows to define new generation technologies suitable to reduce module cost towards the short‐term goal of 1 € per watt‐peak. This goal roughly corresponds with the cost level needed to enable ‘grid parity’: the situation solar electricity becomes competitive with retail electricity. The new technologies are described and their costs are analysed. Cost reductions due to scale effects in production are also assessed for next generation manufacturing plants with capacities in the range of several hundreds of megawatts to one gigawatt of module power per year, which are to come in the near future. The combined effects of technology development and economies of scale bring the direct manufacturing costs of wafer‐based crystalline silicon solar modules down into the range of 0·9–1·3 € per watt‐peak, according to current insights and information (the range results from differences between technologies as well as from uncertainties per technology). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Nanostructured crystalline silicon is promising for thin‐silicon photovoltaic devices because of reduced material usage and wafer quality constraint. This paper presents the optical and photovoltaic characteristics of silicon nanohole (SiNH) arrays fabricated using polystyrene nanosphere lithography and reactive‐ion etching (RIE) techniques for large‐area processes. A post‐RIE damage removal etching is subsequently introduced to mitigate the surface recombination issues and also suppress the surface reflection due to modifications in the nanohole sidewall profile, resulting in a 19% increase in the power conversion efficiency. We show that the damage removal etching treatment can effectively recover the carrier lifetime and dark current–voltage characteristics of SiNH solar cells to resemble the planar counterpart without RIE damages. Furthermore, the reflectance spectra exhibit broadband and omnidirectional anti‐reflective properties, where an AM1.5 G spectrum‐weighted reflectance achieves 4.7% for SiNH arrays. Finally, a three‐dimensional optical modeling has also been established to investigate the dimension and wafer thickness dependence of light absorption. We conclude that the SiNH arrays reveal great potential for efficient light harvesting in thin‐silicon photovoltaics with a 95% material reduction compared to a typical cell thickness of 200 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes the life cycle assessment (LCA) for photovoltaic (PV) power plants in the new ecoinvent database. Twelve different, grid‐connected photovoltaic systems were studied for the situation in Switzerland in the year 2000. They are manufactured as panels or laminates, from monocrystalline or polycrystalline silicon, installed on facades, slanted or flat roofs, and have 3 kWp capacity. The process data include quartz reduction, silicon purification, wafer, panel and laminate production, mounting structure, 30 years operation and dismantling. In contrast to existing LCA studies, country‐specific electricity mixes have been considered in the life cycle inventory (LCI) in order to reflect the present market situation. The new approach for the allocation procedure in the inventory of silicon purification, as a critical issue of former studies, is discussed in detail. The LCI for photovoltaic electricity shows that each production stage is important for certain elementary flows. A life cycle impact assessment (LCIA) shows that there are important environmental impacts not directly related to the energy use (e.g., process emissions of NOx from wafer etching). The assumption for the used supply energy mixes is important for the overall LCIA results of different production stages. The presented life cycle inventories for photovoltaic power plants are representative for newly constructed plants and for the average photovoltaic mix in Switzerland in the year 2000. A scenario for a future technology (until 2010) helps to assess the relative influence of technology improvements for some processes. The very detailed ecoinvent database forms a good basis for similar studies in other European countries or for other types of solar cells. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Organic solar cells, both in the hybrid dye sensitized technology and in the full organic polymeric technology, are a promising alternative that could supply solar electricity at a cost much lower than other more conventional inorganic photovoltaic technologies. This paper presents a life cycle analysis of the laboratory production of a typical bulk heterojunction organic solar cell and compares this result with those obtained for the industrial production of other photovoltaic technologies. Also a detailed material inventory from raw materials to final photovoltaic module is presented, allowing us to identify potential bottlenecks in a future supply chain for a large industrial output. Even at this initial stage of laboratory production, the energy payback time and CO2 emission factor for the organic photovoltaic technology is of the same order of other inorganic photovoltaic technologies, demonstrating that there is plenty of room for improvement if the fabrication procedure is optimized and scaled up to an industrial process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
We analyze the potential cost competitiveness of two frameless, glass–glass thin‐film tandem photovoltaic module structures, cadmium telluride (CdTe)/CuInSe2 (CIS) and CuIn0.3Ga0.7Se2 (CIGS)/CIS, based on the demonstrated cost of manufacturing the respective component cell technologies in high volume. To consider multiple economic scenarios, we base the CdTe/CIS module efficiency on the current industrial production of CdTe modules, while for CIGS/CIS, we use an aspirational estimate for CIGS efficiency. We focus on four‐terminal mechanically stacked structures, thus avoiding the need to achieve current matching between the two cells. The top cell in such a tandem must have a transparent back contact, which has not been successfully implemented to date. However, for the purpose of understanding the economic viability of both tandems, we assume that this can be implemented at a cost similar to that of sputtered indium tin oxide. The cost of both tandem module structures was found to be nearly identical on an equal‐area basis and approximately $30/m2 higher than the single‐junction alternatives. Both tandem modules are about 4% (absolute) more efficient than a module by using the top‐cell material alone. We find that these tandem modules might reduce total system cost by as much as 11% in applications having a high area‐related balance‐of‐system cost, such as area‐constrained residential systems; however, the relative advantage of tandems decreases in the cases where balance‐of‐system costs are lower, such as in commercial and utility scale systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The number of US photovoltaic (PV) systems has grown rapidly in recent years, driven by a wide array of government incentives and other supportive policies aimed, in part, at reducing PV system prices. This article draws from a sample of more than 200,000 US residential, commercial, and utility‐scale PV projects to summarize price trends for PV systems installed from 1998 through 2012. These data show that the average installed price of US residential and commercial PV systems declined 6–7% annually during 1998–2012, although the pace and source of price reductions varied. In 2012, the median reported installed price of residential and commercial PV systems was $5.3/W for systems of 10 kW or smaller, $4.9/W for systems of 10–100 kW, and $4.6/W for systems larger than 100 kW. The capacity‐weighted average installed price of crystalline, fixed‐tilt, utility‐scale PV systems (ground‐mounted systems at least 2 MW in size) declined from $6.2/W during 2007–2009 to $3.3/W in 2012. Recent price reductions are associated primarily with a precipitous drop in PV module prices, while non‐module costs have remained relatively stagnant since 2005. Further system price reductions will be needed to expand US PV deployment as incentive programs reduce their financial support. Because further module price reductions are limited, additional deep reductions in installed prices will require significant reductions in non‐module costs, particularly non‐hardware (“soft”) costs. Lower installed prices in international markets suggest that deep near‐term soft cost reductions in the USA are possible with the help of targeted policies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Manufacturing cost analysis is becoming an increasingly important tool in the photovoltaics industry to identify research areas that need attention and enable progress towards cost reduction targets. We describe a method to estimate manufacturing cost that is suitable for use during an early stage of technology development, delivering both the manufacturing cost estimate as well as an uncertainty analysis that quickly highlights the opportunities for greatest cost improvement. We apply the technique to three process sequences for the large‐scale production of organic‐inorganic hybrid perovskite photovoltaic modules. A process sequence that combines two demonstrated perovskite module sequences is estimated to cost $107/m2 (uncertainty range $87 to 140/m2), comparable with commercial crystalline silicon and cadmium telluride technologies (on a US $/m2 basis). A levelized cost of electricity calculation shows that this perovskite technology would be competitive in 2015 with incumbent photovoltaic technologies if a module power conversion efficiency of 18% and lifetime of 20 years can be achieved. Further analysis shows that even if the cost of the active layers and rear electrode were reduced to zero, a module power conversion efficiency of 18% and lifetime of 20 years would be required to meet the 2020 SunShot levelized cost of electricity targets. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Plastic‐based photovoltaic (PV) technology, also known as organic photovoltaic (OPV), has the development promise to be one of the third PV generation technologies, practically where sunlight reaches a surface area both indoors and outdoors. This paper presents the economic forecast for solar electricity using OPV technology based on a 1 kWp domestic system. With reference to OPV roll‐to‐roll manufacturing, the paper discusses lifetime, efficiency, and costs factors of this emerging PV technology. Taking an outlook of historic PV technology developments and reflect future anticipated technology developments, the future levelised electricity cost is calculated using system life cycle costing techniques. Grid parity at levelised electricity cost below 25 c/kWh may already be reached within 10 years' time, and the technology would have been widespread, assuming a typical southern Europe average solar irradiance of 1700 kWh/m2/year. The influence of solar irradiance and the way the module performs over long periods of time expecting various degradation levels is studied using sensitivity analysis. Eventually, the financial attractiveness to mature silicon‐based PV technology may decline suddenly as financial support schemes such as the popular Feed‐in‐Tariffs dry out. This would give rise to other promising solutions that have already been proven to be less energy intensive and cheaper to produce but may require a different integration model than present technologies. This paper demonstrates that under no financial support schemes emerging PV technologies such as OPV will manage to attract business and further developments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Maximization of module conversion efficiency based on global normal irradiance (GNI) rather than direct normal irradiance (DNI) was experimentally demonstrated using a hybrid concentrator photovoltaic (CPV) architecture in which a low‐cost solar cell (a bifacial crystalline silicon cell) was integrated with a high‐efficiency concentrator solar cell (III–V triple‐junction cell) to harvest diffuse sunlight. The results of outdoor experiments showed that the low‐cost cell enhanced the generated power by factors of 1.39 and 1.63 for high‐DNI and midrange‐DNI conditions, respectively, and that the resultant GNI‐based module efficiencies were 32.7% and 25.6%, respectively. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

11.
Providing two‐thirds of the total stabilized power of thin‐film tandem MICROMORPHTM technology, the amorphous junction remains a key element in the quest for higher efficiencies. This paper reports and summarizes a considerable work to achieve a record large‐area amorphous silicon single‐junction photovoltaic module. New hardware has been developed and known process steps have been accurately tuned and combined with new features of cell design. Effort was focused on the deposition of high‐quality and low‐defect a‐Si:H layers that has promoted an improved device stability and resistance against light induced degradation. Efficient light management has been used, and module design has been revised. The word‐record performance reported in this paper for a large‐area (1.43 m2) stabilized module conversion efficiency (total area) was measured and certified by Swiss PV Module Test Center to be 9.1%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Solution processing of inorganic thin films has become an important thrust in material research community because it offers low‐cost and high‐throughput deposition of various functional coatings and devices. Especially inorganic thin film solar cells – macroelectronic devices that rely on consecutive deposition of layers on large‐area rigid and flexible substrates – could benefit from solution approaches in order to realize their low‐cost nature. This article critically reviews existing deposition approaches of functional layers for chalcogenide solar cells with an extension to other thin film technologies. Only true solutions of readily available metal salts in appropriate solvents are considered without the need of pre‐fabricated nanoparticles. By combining three promising approaches, an air‐stable Cu(In,Ga)Se2 thin film solar cell with efficiency of 13.8% is demonstrated where all constituent layers (except the metal back contact) are processed from solutions. Notably, water is employed as the solvent in all steps, highlighting the potential for safe manufacturing with high utilization rates.  相似文献   

13.
There are very few published data comparing performance and cost of thermal and photovoltaic (PV) based solar power generations. With recent intense technology and business developments there is a need to establish a comparison between these two solar energy options. We have developed a simple model to compare electricity cost using these two options without any additional fuel source of hybridization. Capital along with operation and maintenance (O&M) costs and other parameters from existing large scale solar farms are used to reflect actual project costs. To compete with traditional sources of power generation, solar technologies need to provide dispatchable electric power to respond to demand during peak hours. Different solutions for energy storage are available. In spite of their high capital cost, adding energy storage is considered a better long term solution than hybrid solar systems for large scale power plants. For this reason, a comparison between the two solar options is also provided that include energy storage. Although electricity storage is more expensive than thermal storage, PV power remains a competitive option. Expenses related to O&M in solar thermal plant are about ten times higher than PV, an important factor resulting in higher energy cost. Based on data from proven commercial technologies, this study showed that PV holds a slight advantage even when energy storage is included. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

14.
高性能低成本微波组件制造技术   总被引:1,自引:1,他引:0  
高性能、低成本的微波组件制造技术对复杂昂贵的电子系统的普及应用具有重要意义。目前,微波组件多采用薄膜或微波介质片工艺制造。其调试造手工操作来完成,制造成本较高,生产一致性差。先进的铜厚膜工艺具有微性能好、便于大量生产等特点,是一 高性能、低成本的电路基板制造技术。激光技术与自动测试技术自动控制技术相结合可实现对微波组件的高精度动态闭环自动化测试修调。采用这些先进技术,能提高生产效率。降低微波组件的  相似文献   

15.
The building‐integrated photovoltaic (PV) technology is one of the most promising applications for amorphous silicon (a‐Si) thin film solar cells. It is necessary to develop more various building‐integrated PV modules, which will provide architects and industries more options for the PV installation to their buildings or construction bodies. In this paper, a new type of a‐Si PV module, called image‐patterned translucent a‐Si PV module, is developed. Any required image can be displayed on the module by using laser processes. In the present result, a 5.5 generation (1100 × 1400 mm) image‐patterned translucent PV module with 10% transmittance exhibits the stabilized maximum power output (Pmax) of 92.5 W, which can be further improved by optimizing the laser parameters. The remarkable features of our module such as the image displaying, natural light transmission, and heat reduction create entirely new applications including windows and logos and provide an option that adds personal style and unique design to the building interiors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Mass‐adoption of thin‐film silicon (TF‐Si) photovoltaic modules as a renewable energy source can be viable if the cost of electricity production from the module is competitive with conventional energy solutions. Increased module performance (electrical power generated) is an approach to reduce this cost. Progress towards higher conversion efficiencies for ‘champion’ large area modules paves the way for mass‐production module performance to follow. At TEL Solar AG, Trübbach, Switzerland, significant progress in the absolute stabilized module conversion efficiency has been achieved through optimized solar cell design that integrates high‐quality amorphous and microcrystalline TF‐Si‐deposited materials with efficient light management and transparent conductive oxide layers in a tandem MICROMORPH™ module. This letter reports a world record large area (1.43 m2) stabilized module conversion efficiency of 12.34% certified by the European Solar Test Installation; an increase of more than 1.4% absolute compared with the previous record for a TF‐Si triple junction large area module. This breakthrough result generates more than 13.2% stabilized efficiency from each equivalent 1 cm2 of the active area of the full module. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The interconnection of solar cells is a critical part of photovoltaic module fabrication. In this paper, a high‐yield, low‐cost method for interconnecting polycrystalline silicon thin‐film solar cells on glass is presented. The method consists of forming adjacent, electrically isolated groves across the cells using laser scribing, and then forming wire bonds over each laser scribe, resulting in series interconnection of the individual solar cells. Wire bonds are also used to connect the first and last solar cell in the string to external (tabbing) leads, forming a mini‐module. A layer of white paint is then applied, which acts as both an encapsulation layer and an additional back surface reflector. Using this method, an 8·3% efficient mini‐module has been fabricated. By exploiting recent developments in wire bonding technology, it appears that this process can be automated and will be capable of forming solar cell interconnections on large‐area modules within relatively short processing times (∼10 min for a 1 m2 module). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The dominant photovoltaic (PV) technology today is crystalline silicon, used in 85% of the terrestrial modules shipped in 1996. Thin-film PV technologies promise to allow significant reductions in the cost per watt of electricity generated by PV modules. However, thin films must meet or exceed the standards for performance, reliability, and cost set by crystalline silicon in order to successfully penetrate the market. This paper reports the results of a detailed economic analysis done for a 25 MW year−1 multi-crystalline silicon production facility, including crystal growth, water slicing, solar cell fabrication and module assembly. The module manufacturing cost is projected to be $1·78 W−1. The sensitivity of module cost to polysilicon cost and cell efficiency were determined. This analysis provides a near-term (1998–2000) cost/performance benchmark against which thin-film technologies can be compared. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
A higher conversion efficiency of photovoltaic modules does not automatically imply a lower environmental impact, when the life‐cycle of modules is taken into account. An environmental comparison is carried out between the production and use phase, except maintenance, of an indium–gallium–phosphide (InGaP) on multicrystalline silicon (mc‐Si) tandem module, a thin‐film InGaP cell module and a mc‐Si module. The evaluation of the InGaP systems was made for a very limited industrial production scale. Assuming a fourfold reuse of the GaAs substrates in the production of the thin‐film InGaP (half) modules, the environmental impacts of the tandem module and of the thin‐film InGaP module are estimated to be respectively 50 and 80% higher than the environmental impact of the mc‐Si module. The energy payback times of the tandem module, the thin‐film InGaP module and the mc‐Si module are estimated to be respectively 5.3, 6.3 and 3.5 years. There are several ways to improve the life‐cycle environmental performance of thin‐film InGaP cells, including improved materials efficiency in production and reuse of the GaAs wafer and higher energy efficiency of the metalorganic chemical vapour deposition process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
We report a new certified world‐record efficiency for thin‐film Cu(In,Ga)Se2‐based photovoltaic sub‐modules of 17.4% (aperture area). The record efficiency of the 16 cm2, monolithically integrated, sub‐module has been independently confirmed by Fraunhofer ISE. The record device is the result of extensive co‐optimization of all processing steps. During the optimization process, strong focus has been put on the scalability of processes to cost‐effective mass production, as reflected, for example, in Cu(In,Ga)Se2 deposition time and substrate temperature. Device manufacturing as well as results of electrical and material characterization is discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号