首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

2.
Clustering technique in wireless sensor networks incorporate proper utilization of the limited energy resources of the deployed sensor nodes with the highest residual energy that can be used to gather data and send the information. However, the problem of unbalanced energy consumption exists in a particular cluster node in the network. Some more powerful nodes act as cluster head to control sensor network operation when the network is organized into heterogeneous clusters. It is important to assume that energy consumption of these cluster head nodes is balanced. Often the network is organized into clusters of equal size where cluster head nodes bear unequal loads. Instead in this paper, we proposed a new protocol low-energy adaptive unequal clustering protocol using Fuzzy c-means in wireless sensor networks (LAUCF), an unequal clustering size model for the organization of network based on Fuzzy c-means (FCM) clustering algorithm, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. A heuristic comparison between our proposed protocol LAUCF and other different energy-aware protocol including low energy adaptive clustering hierarchy (LEACH) has been carried out. Simulation result shows that our proposed heterogeneous clustering approach using FCM protocol is more effective in prolonging the network lifetime compared with LEACH and other protocol for long run.  相似文献   

3.
A wireless sensor network is a network of large numbers of sensor nodes, where each sensor node is a tiny device that is equipped with a processing, sensing subsystem and a communication subsystem. The critical issue in wireless sensor networks is how to gather sensed data in an energy-efficient way, so that the network lifetime can be extended. The design of protocols for such wireless sensor networks has to be energy-aware in order to extend the lifetime of the network because it is difficult to recharge sensor node batteries. We propose a protocol to form clusters, select cluster heads, select cluster senders and determine appropriate routings in order to reduce overall energy consumption and enhance the network lifetime. Our clustering protocol is called an Efficient Cluster-Based Communication Protocol (ECOMP) for Wireless Sensor Networks. In ECOMP, each sensor node consumes a small amount of transmitting energy in order to reach the neighbour sensor node in the bidirectional ring, and the cluster heads do not need to receive any sensed data from member nodes. The simulation results show that ECOMP significantly minimises energy consumption of sensor nodes and extends the network lifetime, compared with existing clustering protocol.  相似文献   

4.
In the wireless sensor networks, high efficient data routing for the limited energy resource networks is an important issue. By introducing Ant-colony algorithm, this paper proposes the wireless sensor network routing algorithm based on LEACH. During the construction of sensor network clusters, to avoid the node premature death because of the energy consumption, only the nodes whose residual energy is higher than the average energy can be chosen as the cluster heads. The method of repeated division is used to divide the clusters in sensor networks so that the numbers of the nodes in each cluster are balanced. The basic thought of ant-colony algorithm is adopted to realize the data routing between the cluster heads and sink nodes, and the maintenance of routing. The analysis and simulation showed that the proposed routing protocol not only can reduce the energy consumption, balance the energy consumption between nodes, but also prolong the network lifetime.  相似文献   

5.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

6.
无线传感器网络中LEACH协议是一种典型的能有效延长网络生命周期的节能通信协议。因为其优秀的节能效果和其简单的规程得到了广泛的认可。但是LEACH簇头算法存在簇头开销大、簇头没有确定的数量和位置等不足。而在成簇后的稳定阶段,节点通过一跳通信将数据传送给簇头,簇头也通过一跳通信将聚合后的数据传送给基站,这样会造成簇头节点...  相似文献   

7.
Due to the promising application of collecting information from remote or inaccessible location, wireless sensor networks pose big challenge for data routing to maximize the communication with more energy efficient. Literature presents different cluster-based energy aware routing protocol for maximizing the life time of sensor nodes. Accordingly, an energy efficient clustering mechanism, based on artificial bee colony algorithm and factional calculus is proposed in this paper to maximize the network energy and life time of nodes by optimally selecting cluster-head. The hybrid optimization algorithm called, multi-objective fractional artificial bee colony is developed to control the convergence rate of ABC with the newly designed fitness function which considered three objectives like, energy consumption, distance travelled and delays to minimize the overall objective. The performance of the proposed FABC-based cluster head selection is compared with LEACH, PSO and ABC-based routing using life time, and energy. The results proved that the proposed FABC maximizes the energy as well as life time of nodes as compared with existing protocols.  相似文献   

8.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

9.
Clustering provides an effective way to prolong the lifetime of wireless sensor networks.One of the major issues of a clustering protocol is selecting an optimal group of sensor nodes as the cluster heads to divide the network.Another is the mode of inter-cluster communication.In this paper,an energy-balanced unequal clustering(EBUC)protocol is proposed and evaluated.By using the particle swarm optimization(PSO)algorithm,EBUC partitions all nodes into clusters of unequal size,in which the clusters closer to the base station have smaller size.The cluster heads of these clusters can preserve some more energy for the inter-cluster relay traffic and the 'hot-spots' problem can be avoided.For inter-cluster communication,EBUC adopts an energy-aware multihop routing to reduce the energy consumption of the cluster heads.Simulation results demonstrate that the protocol can efficiently decrease the dead speed of the nodes and prolong the network lifetime.  相似文献   

10.
无线传感器网络(Wireless Sensor Networks,WSN)的路由协议是无线传感器网络领域中的一个研究热点.针对LEACH协议的不足,提出一种基于自适应t分布改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)的改进LEACH协议(LEACH?ISSA),以解决...  相似文献   

11.
无线传感网络(WSN)路由协议中,分簇路由具有拓扑管理方便、能量高效和数据融合简单等优点,成为当前重点研究的路由技术。通过研究各种环境下的移动传感器网络,有效地降低能耗则是研究移动无线传感器网络的重要目的之一。针对无线传感网络中移动性问题,基于LEACH协议,利用移动传感器网络中节点距离、速度和剩余能量等因素提出了能量高效的移动分簇路由算法。实验结果表明此算法能够较好地支持节点移动,从而降低网络能耗,延长网络生存时间。  相似文献   

12.
Wireless sensor networks (WSNs) are composed of many low cost, low power devices with sensing, local processing and wireless communication capabilities. Recent advances in wireless networks have led to many new protocols specifically designed for WSNs where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. Minimizing energy dissipation and maximizing network lifetime are important issues in the design of routing protocols for WSNs. In this paper, the low-energy adaptive clustering hierarchy (LEACH) routing protocol is considered and improved. We propose a clustering routing protocol named intra-balanced LEACH (IBLEACH), which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that IBLEACH outperforms LEACH and the existing improvements of LEACH in terms of network lifetime and energy consumption minimization.  相似文献   

13.
One of important issues in wireless sensor networks is how to effectively use the limited node energy to prolong the lifetime of the networks. Clustering is a promising approach in wireless sensor networks, which can increase the network lifetime and scalability. However, in existing clustering algorithms, too heavy burden of cluster heads may lead to rapid death of the sensor nodes. The location of function nodes and the number of the neighbor nodes are also not carefully considered during clustering. In this paper, a multi-factor and distributed clustering routing protocol MFDCRP based on communication nodes is proposed by combining cluster-based routing protocol and multi-hop transmission. Communication nodes are introduced to relay the multi-hop transmission and elect cluster heads in order to ease the overload of cluster heads. The protocol optimizes the election of cluster nodes by combining various factors such as the residual energy of nodes, the distance between cluster heads and the base station, and the number of the neighbor nodes. The local optimal path construction algorithm for multi-hop transmission is also improved. Simulation results show that MFDCRP can effectively save the energy of sensor nodes, balance the network energy distribution, and greatly prolong the network lifetime, compared with the existing protocols.  相似文献   

14.
无线传感器网络节点能量有限,因此为了避免由于节点的能量不足而造成网络瘫痪,在组网过程中必须要充分考虑到节点能量的情况,Leach协议是其中一种典型的网络分簇路由协议。针对传统leach协议在分簇过程中未能考虑网络内节点能量以及簇首数量的基础上,提出一种新的簇首选取优化算法,旨在达到均衡网络能量、延长网络生命周期的结果。经OPNET仿真表明,该算法能快速选择簇首、节省节点能量以及均衡网络的能量分布,最后有效地延长网络的生命周期。  相似文献   

15.
在无线传感器网络中的LEACH协议是一种自适应聚类路由算法.由于LEACH协议存在着无法控制簇首在网络中的分布位置、簇首选择方式限制条件不够等缺点导致能量消耗太大.基于簇头能量限制和双簇头路由方式,对LEACH协议进行了改进,设计了一种降低能耗的双簇头非均匀分簇路由协议.双簇头非均匀分簇路由协议采用NS2进行网络仿真实验,通过仿真结果的分析以及与LEACH协议的对比,证明双簇头非均匀分簇路由协议有效提高了网络能耗的均衡性.  相似文献   

16.
Routing protocol plays a role of great importance in the performance of wireless sensor networks (WSNs). A centralized balance clustering routing protocol based on location is proposed for WSN with random distribution in this paper. In order to keep clustering balanced through the whole lifetime of the network and adapt to the non-uniform distribution of sensor nodes, we design a systemic algorithm for clustering. First, the algorithm determines the cluster number according to condition of the network, and adjusts the hexagonal clustering results to balance the number of nodes of each cluster. Second, it selects cluster heads in each cluster base on the energy and distribution of nodes, and optimizes the clustering results to minimize energy consumption. Finally, it allocates suitable time slots for transmission to avoid collision. Simulation results demonstrate that the proposed protocol can balance the energy consumption and improve the network throughput and lifetime significantly.  相似文献   

17.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

18.
一种基于LEACH协议的改进算法   总被引:5,自引:0,他引:5       下载免费PDF全文
吕涛  朱清新  张路桥 《电子学报》2011,39(6):1405-1409
作为能量有效、基于层次结构的路由协议的典型代表,LEACH协议存在的不足表现为网络中会出现极大簇和极小簇并存;当节点能量不同时簇头选择不合理;在簇头死亡后簇内节点仍会消耗能量.本文基于LEACH提出了一种改进算法,使用引入簇成员数门限和合并极小簇的方法避免极大簇和极小簇同时存在;通过对簇头能量消耗的估计,在簇头能量耗尽...  相似文献   

19.
任克强  余建华  谢斌 《电视技术》2015,39(13):69-72
为了降低无线传感器网络(WSN)的能耗,延长网络的生存周期,提出一种多簇头双工作模式的分簇路由算法.算法对低功耗自适应集簇分层(LEACH)协议作了以下改进:采用多簇头双工作模式来分担单簇头的负荷,以解决单簇头因能耗较大而过早消亡的问题;选举簇头时充分考虑节点位置和节点剩余能量,并应用粒子群优化(PSO)算法优化簇头的选举,以均衡网络内各节点的能耗;建立簇与簇之间的数据传输路由,以减少簇间通信的能耗.仿真结果表明,算法有效降低了网络的能耗,延长了网络的生存周期.  相似文献   

20.
Most of the current generation sensor nodes of mobile wireless sensor network (MWSN) are designed to have heterogeneous mobility to adapt itself in the applied environment. Energy optimization in MWSN with heterogeneous mobility is very challenging task. In this paper, a heterogeneous game theoretical clustering algorithm called mobile clustering game theory–1 (MCGT‐1) is proposed for energy optimization in a heterogeneous mobile sensor environment. Energy optimization is achieved through energy‐efficient cluster head election and multipath routing in the network. A heterogeneous clustering game is modelled with varying attributes and located an asymmetric equilibrium condition for a symmetric game with mixed strategies. The real‐time parameters, namely, predicted remaining energy, distance between a base station and nodes, distance between nodes, and mobility speed, were used to calculate the probability to elect the cluster head (CH). The efficient multipath routing is achieved through prior energy prediction strategy. It has mitigated the generation of “hot spots,” reducing its delay and improving the overall residual energy of the network. Simulation results showed that the average lifetime of MCGT‐1 has increased by 6.33 %, 13.1% and 14.2% and the PDR has improved by 4.8%,11.8%, and 17.2% than MCGT, LEACH‐ME and LEACH‐M respectively. The hot spot delay is reduced to 0.063025 seconds, improving the efficiency of the network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号