首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
数字闭环光纤陀螺仪测量角速度时,采用方波调制引起的各种失真会对输出结果产生影响。基于傅里叶级数建立包含失真噪声的闭环光纤陀螺方波调制、解调信号模型,对各种调制失真引起的输出误差进行了仿真分析,并提出一种双极型归零脉冲方波解调方法,用于消除方波调制闭环光纤陀螺仪的输出信号误差。仿真结果表明:采用常规方波解调时,调制信号的相位失真、方波脉宽失真、谐波失真以及梳状噪声脉冲对光纤陀螺仪输出有很大影响,测量角速度相对误差可达1%量级。采用双极型归零脉冲方波解调时,上述调制失真的影响都得到有效的减小,陀螺仪测量角速度相对误差只有0.1%量级,降低了一个数量级,说明文中提出的双极型归零脉冲方波解调方法对提高闭环陀螺的测量精度和稳定性有重要意义。  相似文献   

2.
针对数字闭环光纤陀螺中由串扰引起的死区问题,本文提出了一种新的在不同调制深度下消除串扰的多态调制方法。根据数字闭环光纤陀螺调制解调的原理,建立了调制序列与解调序列的相关函数,当该相关函数为零时,可以获得多态调制序列中φm与2π-φm的比例关系,从而获得了不同调制深度下消除串扰的多态调制方案。对不同调制深度下构造的多态调制方案进行实验测试,结果表明,本文提出的数字闭环光纤陀螺多态调制方案能消除由串扰引起的死区问题。  相似文献   

3.
方波调制误差对光纤陀螺的影响分析与实验   总被引:1,自引:0,他引:1  
根据数字闭环光纤陀螺的方波调制、解调原理,指出调制方波的频率、相位和占空比不理想是造成方波调制误差的原因。讨论了周期脉冲干扰的频率和相位特征,利用周期脉冲干扰的傅里叶级数推导出了方波调制误差的数学模型。建立了带有方波调制误差的闭环光纤陀螺简化模型,推导出了方波调制误差和陀螺输出偏置误差的关系。通过仿真和测试分析了调制方波的周期、相位、占空比、光纤环的群延时以及放大电路的增益带宽对陀螺输出偏置的影响。最后,给出了一种利用周期脉冲干扰波形检测方波调制误差的简易方法。  相似文献   

4.
谐振式微光学陀螺中相位调制非线性研究   总被引:4,自引:2,他引:2  
通过在相位调制器上施加线性变化的调制信号来实现对光波频率的方波调制是目前谐振式微光学陀螺(RMOG)中普遍采用的调制方法。而实现理想的方波频率调制要求完全线性的调制波形,极大地增加了系统实现难度。研究了调制曲线非线性对谐振腔输出的影响,仿真计算了具有二阶和三阶非线性误差的调制曲线引起的谐振曲线偏移和畸变。分析了解调输出误差与调制曲线非线性度的关系。通过搭建RMOG实验系统,测试了实际产生三角波调制信号的高阶非线性系数以及陀螺输出的标度因数。实验验证了理论分析计算方法的正确性以及采用模拟三角波产生方法改善微光学陀螺中相位调制非线性的可行性。  相似文献   

5.
在全光纤开环光纤陀螺中,利用压电陶瓷调制器可以为光纤陀螺提供互易性正弦相位偏置,但相位调制中的寄生非线性会对陀螺测量产生影响。从理论上给出了二倍频非线性相位调制情况下开环光纤陀螺输出信号的一、二、四次谐波表达式,分析了相位调制非线性对陀螺工作点测量与信号解调的影响,实验验证了相关结果。实验结果与理论分析表明在陀螺应用中必须采取措施抑制非线性相位调制的幅度。  相似文献   

6.
光纤陀螺方波调制误差的分析与抑制   总被引:1,自引:0,他引:1  
基于光纤陀螺的调制-解调原理,讨论了调制方波的频率、相位、占空比和光纤环特征频率对方波调制误差的影响,推导出方波调制误差的数学模型.测量光纤环特征频率、调制方波频率、相位及其温度系数,分析了温度变化对方波调制误差的影响.提出了数字时域梳状滤波的解调方法,推导出消除方波调制误差的条件表达式.实验结果显示,数字时域梳状滤波可以使方波调制误差引起的偏置漂移减小到0.3°/h以下.  相似文献   

7.
为了实现快速且高精度的光纤陀螺(FOG)本征频率跟踪测量,提出了一种基于锯齿波调制的本征频率跟踪方法。根据基于偶数倍本征频率锯齿波调制的光纤陀螺本征频率测量理论,对相位调制器施加接近偶数倍本征频率的锯齿波调制信号,然后对光波进行相位调制,解调得出的误差信号强度反映锯齿波调制频率偏离偶数倍本征频率的程度。根据误差信号的强度调节锯齿波调制信号的频率,使误差信号为零,此时锯齿波信号的频率等于本征频率的偶数倍且方波偏置调制准确地处于本征频率上。实验结果表明,该方法可以实现光纤陀螺本征频率的跟踪。与传统测量方法相比,该方法具有快速、高精度等优点,测量的精度优于1Hz。  相似文献   

8.
陈飞  窦高奇  高俊  万志毅 《通信技术》2015,48(5):541-545
连续相位调制(CPM)信号是一种具有高频谱效率和功率效率的恒包络调制技术,但基于传统相位网格的CPM信号调制解调算法复杂度高、计算量大。提出了一种基于倾斜相位网格的CPM调制解调算法,通过分析CPM相位网络图和分解模型,给出了CPM信号倾斜相位网格设计、状态存储、初始化及译码的实现方法,相比传统相位,该算法更加简洁、计算量更小,并通过仿真验证了设计方案的正确性。  相似文献   

9.
基于对称方波调制的光纤陀螺本征频率自动测试方法   总被引:1,自引:0,他引:1  
从光纤陀螺的调制原理出发,采用频率为光纤环本征频率的1/2的对称方波对Y波导进行调制,分析光纤陀螺的输出信号,得到输出的方波信号的占空比与调制频率的对应关系,通过数据采集卡将占空比转化为方波上下峰值点数差的问题,并以此点数差作为反馈量调节对Y波导的调制频率实现对本征频率的自动锁定。该方法已在工程实践中得到应用,试验结果表明该测试方法可在几秒中之内完成而且测试精度可达0.01kHz。与已有的测量方法相比,基于对称方波调制的测试方法具有更高的精度、高速、数字化和易于实现自动测量。  相似文献   

10.
提出了一种幅度准恒包络、相位连续的差分相移键控调制与解调方法.该方法设计了一组基带信号集合,根据输入的信息值和状态值选择基带信号来实现信号调制.在信号解调中,通过计算接收信号在一个符号持续时间内的相位变化累积量来判决发送信息.仿真结果表明,该调制方法具有良好的频谱特性和准恒包络特性,并且避免了本振偏离、多普勒频移等引起的符号间相位变化对信号解调的影响.  相似文献   

11.
介绍了一种采用DSP和相关检测技术实现的闭环干涉式光纤陀螺.该闭环光纤陀螺采用以多功能集成光学器件为核心的结构,以方波为偏置调制,数字阶梯波为反馈.在此基础上提出的相关检测方法较好地发挥了闭环干涉式光纤陀螺的优点,使系统具有检测精度高、动态范围大、低漂移等优点,是一种理想的检测技术.  相似文献   

12.
光纤陀螺本征频率的测量方法   总被引:1,自引:0,他引:1  
根据数字闲环光纤陀螺的方波调制、解调原理,指出了使用对称方波产生调制死区的原因及对测量精度的影响.提出了一种基于任意占空比的不对称方波作为调制波来测量光纤陀螺本征频率的方法,找出了调制方波占空比和光功率响应中无效调制区的关系,并给出测试本征频率时,调制方波占空比的最佳范围.理论和实验证明了占空比对本征频率测量精度的影响.与使用对称方波相比,使用不对称方波提高了测量精度,降低了对系统硬件的要求.  相似文献   

13.
尹国路 《光电子.激光》2010,(11):1645-1649
开环光纤陀螺(FOG)常使用压电陶瓷(PZT)实现非互易性相位偏置,但相位调制中的非线性会造成工作点不稳定和Sagnac相位解调误差。本文对PZT二倍频调制和相位延迟导致的寄生调制信号进行了理论分析,进而提出在小角度Sagnac相移输入时利用二、四次谐波监控工作点,在Sagnac相移逐渐变大时利用一、三次谐波监控工作点;同时对比了相位延迟角为0°和90°所引起的工作点不稳定,采用较大相位延迟角可将工作点绝对误差降低到10-5水平,相位解调误差降低到10-5rad水平。  相似文献   

14.
针对常规接收方法接收自适应编码调制信号时存在的接收过程易中断、数据不连续等问题,提出了一种适用于卫星信道的自适应编码调制信号接收方法.该方法通过采用统一的解调结构实现对不同调制信号的连续跟踪;利用接收端保存的帧同步字调制波形副本与接收信号中的帧同步字波形的相关结果,对解调方式切换时载波相位跳变值进行估计和补偿,解决了帧同步的连续跟踪问题.与现有方法相比,该方法不需要导频信号,可节省系统开销.  相似文献   

15.
扩展的二元相移键控(EBPSK)是一种十分灵活的调制方式,只改变几个调制参数即可在调制方式、频谱效率、功率效率和码率等方面进行选择,而解调器可以自适应这种改变。分析了相同的传输码率下EBPSK调制中最简单的3种特例,即反相调制、缺周期调制和窄脉冲调制,并对其功率谱、冲击滤波器输出及非编码解调性能进行了仿真比较,仿真结果揭示了3种调制方式在调制信号、功率谱、冲击滤波器输出及解调性能之间的差异。  相似文献   

16.
小波包阈值降噪法处理光纤陀螺信号   总被引:3,自引:1,他引:2  
光纤陀螺以其自身结构和外部环境的影响容易在输出信号中产生随机噪声。为了消除光纤陀螺输出数据中的随机噪声,提出了用小波包阈值法来处理陀螺信号。在分析小波包变换理论及其分解重构算法的基础上,结合光纤陀螺输出数据的数学模型,对光纤陀螺随机信号进行四层小波包分解。通过阈值法对分解得到的各个节点分解系数中小于阈值的部分置零,利用处理过的节点系数进行重构以消除重构陀螺信号中的噪声。仿真实验结果表明,小波包阈值法比小波软硬阈值法在处理光纤陀螺信号中的效果更好,信噪比更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号