首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用滑模控制的方法,研究了两个不同的带有不确定性和外部扰动的混沌系统之间的同步问题。基于Lyapunov稳定性理论和有限时间滑模控制方法,设计了终端滑模控制器来实现两个混沌系统的同步。在设计控制器过程中提出了一个新的非奇异的终端滑模面,并证明它能在有限时间内收敛于零平衡点。通过数值仿真验证了所设计的控制器的有效性。  相似文献   

2.
A novel direct adaptive interval type-2 fuzzy neural network (FNN) controller in which linguistic fuzzy control rules can be directly incorporated into the controller is developed to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances, in this paper. By incorporating direct adaptive interval type-2 FNN control scheme and sliding mode approach, two non-identical chaotic systems can be synchronized based on Lyapunov stability criterion. Moreover, the chattering phenomena of the control efforts can be reduced and the external disturbance on the synchronization error can be attenuated. The stability of the proposed overall adaptive control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded. From the simulation example, to synchronize two non-identical Chua’s chaotic circuits, it has been shown that type-2 FNN controllers have the potential to overcome the limitations of tpe-1 FNN controllers when training data is corrupted by high levels of uncertainty.  相似文献   

3.
Four-dimensional chaotic systems are a very interesting topic for researchers, given their special features. This paper presents a novel fractional-order four-dimensional chaotic system with self-excited and hidden attractors, which includes only one constant term. The proposed system presents the phenomenon of multi-stability, which means that two or more different dynamics are generated from different initial conditions. It is one of few published works in the last five years belonging to the aforementioned category. Using Lyapunov exponents, the chaotic behavior of the dynamical system is characterized, and the sensitivity of the system to initial conditions is determined. Also, systematic studies of the hidden chaotic behavior in the proposed system are performed using phase portraits and bifurcation transition diagrams. Moreover, a design technique of a new fuzzy adaptive sliding mode control (FASMC) for synchronization of the fractional-order systems has been offered. This control technique combines an adaptive regulation scheme and a fuzzy logic controller with conventional sliding mode control for the synchronization of fractional-order systems. Applying Lyapunov stability theorem, the proposed control technique ensures that the master and slave chaotic systems are synchronized in the presence of dynamic uncertainties and external disturbances. The proposed control technique not only provides high performance in the presence of the dynamic uncertainties and external disturbances, but also avoids the phenomenon of chattering. Simulation results have been presented to illustrate the effectiveness of the presented control scheme.  相似文献   

4.
针对一类系统不确定及受外界干扰的分数阶混沌系统,本文首先将分数阶微积分应用到滑模控制中,构造了一个具有分数阶积分项的滑模面.针对系统不确定及外界干扰项,基于分数阶Lyapunov稳定性理论与自适应控制方法,设计了一种滑模控制器以及分数阶次的参数自适应律,实现了两不确定分数阶混沌系统的同步控制,并辨识出相应误差系统中不确定项及外界干扰项的边界.在分数阶系统稳定性分析中使用的分数阶Lyapunov稳定性理论及相关函数都可以很好地运用到其它分数阶系统同步控制方法中.最后数值仿真验证了所提控制方法的可行性与有效性.  相似文献   

5.
Under the existence of model uncertainties and external disturbance, finite‐time projective synchronization between two identical complex and two identical real fractional‐order (FO) chaotic systems are achieved by employing FO sliding mode control approach. In this paper, to ensure the occurrence of synchronization and asymptotic stability of the proposed methods, a sliding surface is designed and the Lyapunov direct method is used. By using integer and FO derivatives of a Lyapunov function, three different FO real and complex control laws are derived. A hybrid controller based on a switching law is designed. Its behavior is more efficient that if the individual controllers were designed based on the minimization of an appropriate cost function. Numerical simulations are implemented for verifying the effectiveness of the methods.  相似文献   

6.
黄成  王岩  周乃新 《控制与决策》2017,32(10):1789-1795
针对航天器交会对接模拟系统的姿态同步和位置跟踪控制问题,在存在外界扰动和系统不确定性的情况下,基于改进的快速非奇异终端滑模面和改进的自适应律,采用双闭环控制结构分别设计内环和外环有限时间姿态位置耦合控制器.所提出的自适应律不仅能有效地抑制扰动和不确定性且能保证控制器是连续的.李雅普诺夫理论推导和仿真结果表明,所提出的控制方法能保证系统内环和外环跟踪误差的有限时间稳定性和准确收敛性.  相似文献   

7.
针对存在外部干扰、转动惯量矩阵不确定以及执行器故障的航天器姿态跟踪控制问题,本文提出了基于自适应快速非奇异终端滑模的有限时间收敛故障容错控制方案.通过引入能够避免奇异点,且具有有限时间收敛特性的快速非奇异终端滑模面,设计了满足多约束条件有限时间收敛的姿态跟踪容错控制律,利用参数自适应方法使控制器不依赖转动惯量和外部干扰的上界信息.Lyapunov稳定性分析表明:在存在外部干扰、转动惯量矩阵不确定以及执行器故障等约束条件下,本文设计的控制律能够保证闭环系统的快速收敛性,而且对执行器故障具有良好的容错性能.数值仿真校验了该控制律在姿态跟踪控制中的优良性能.  相似文献   

8.
This paper investigates the synchronization problem for a class of uncertain chaotic systems. Only partial information of the system states is known. An adaptive sliding mode observer‐based slave system is designed to synchronize a given chaotic master system with unknown parameters and external disturbances. Based on the Lyapunov stability theorem, the global synchronization between the master and slave systems is ensured. Furthermore, the structure of the slave system is simple and the proposed adaptive sliding mode observer‐based synchronization scheme can be implemented without requiring a priori knowledge of upper bounds on the norm of the uncertainties and external disturbances. Simulation results demonstrate the effectiveness and robustness of the proposed scheme. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
In this paper a novel hybrid direct/indirect adaptive fuzzy neural network (FNN) moving sliding mode tracking controller for chaotic oscillation damping of power systems is developed. The proposed approach is established by providing a tradeoff between the indirect and direct FNN controllers. It is equipped with a novel moving sliding surface (MSS) to enhance the robustness of the controller against the present system uncertainties and unknown disturbances. The major contribution of the paper arises from the new simple tuning idea of the sliding surface slope and intercept of the MSS. This study is novel because the approach adopted tunes the sliding surface slope and intercept of MSS using two simple rules simultaneously. One advantage of the proposed approach is that the restriction of knowing the bounds of uncertainties is also removed due to the adaptive mechanism. Moreover, the stability of the control system is also presented. The proposed controller structure is successfully employed to damp the complicated chaotic oscillations of an interconnected power system, when such oscillations can be made by load perturbation of a power system working on its stability edges. Comparative simulation results are presented, which confirm that the proposed hybrid adaptive type‐2 fuzzy tracking controller shows superior tracking performance.  相似文献   

10.
研究了具有不确定项的非线性Willis环上脑动脉瘤系统的混沌控制和同步问题,提出了一种自适应模糊滑模变结构控制方法,设计了模糊滑模变结构控制器及自适应控制律,并从理论上证明了控制系统的稳定性。在该控制器的作用下,受控Willis脑动脉瘤系统能够达到任意目标轨道,且不受不确定性的影响,具有很强的鲁棒性。定值跟踪和同步控制的仿真结果表明了控制器的有效性。  相似文献   

11.
A fast convergent non-singular terminal sliding mode adaptive control law based on prescribed performance is formulated to solve the uncertainties and external disturbances of robot manipulators. First, the tracking error of robot manipulators is transformed by using the prescribed performance function, which improves the transient behaviors and steady-state accuracy of robot manipulators. Then, a novel fast convergent non-singular terminal sliding mode surface is brought up according to the transformed error, and the control law is derived to meet the stability requirements of robot manipulators. In practice, the upper boundary of the lumped disturbances cannot be accurately obtained. Therefore, an adaptive prescribed performance control (PPC) controller to lumped disturbances is brought up to ensure the stability and finite-time convergence of robot manipulators. Finally, the system stability of robot manipulators is proved by the Lyapunov theorem. Simulation results and comparative analysis demonstrate the superiority and robustness of the raised strategy.  相似文献   

12.
针对带有未知参数和非线性输入的两个不同的混沌系统之间的同步问题进行研究. 提出一个相比于传统滑模面具有更快收敛速度的终端滑模面, 并结合自适应控制理论和滑模控制理论, 设计一个自适应滑模控制律, 使同步误差在有限时间内收敛到滑模面, 并沿滑模面在有限时间内收敛到零点, 最终实现两个不同的混沌系统之间的同步. 最后, 以带有不确定性和外部扰动的Lorenz 系统和Liu 系统为例进行数值仿真, 仿真结果表明, 同步误差在有限时间内收敛到零点, 从而验证了所设计控制律的有效性和可行性.  相似文献   

13.
This paper studies finite-time attitude tracking control problem of a rigid spacecraft system with external disturbances and inertia uncertainties. Firstly, a new finite-time attitude tracking control law is designed using nonsingular terminal sliding mode concepts. In the absence and presence of external disturbances and inertia uncertainties, this controller can drive the attitude and angular velocity tracking errors to reach zero in finite time. Secondly, a finite-time disturbance observer is introduced to estimate the disturbance, and a composite controller is developed which consists of a feedback control based on nonsingular terminal sliding mode method and compensation term based on finite-time disturbance observer. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system is ensured by the Lyapunov approach. Numerical simulations on attitude control of spacecraft are also given to demonstrate the performance of the proposed controllers.  相似文献   

14.
In this paper, we propose a novel chatter free sliding mode control (SMC) strategy for chaos control and synchronization to the nonlinear uncertain chaotic systems. A new sort of dynamical sliding mode surface with both integral and differential operators is introduced to divert the discontinuous sign function switch term into the first derivative of the control input; hence a chatter free control input is obtained for the chaotic systems with uncertainties. Based on the Lyapunov stability theory and SMC technique, stability analysis is performed and a theorem serving as designing the chatter free sliding mode control input is also proposed. In the simulation part, first, the results regarding chaos control and synchronization are given to show that the proposed strategy can control the states of the uncertain chaotic systems to desired states with fast speed. In order to show the advantage of eliminating chatter in control input of our method, we give the simulation results performed by traditional SMC and the method proposed recently. Simulation results indicate that this novel chatter free sliding mode control strategy is very effective to chaos control and synchronization.  相似文献   

15.
针对带有模型不确定和外部干扰的两旋翼飞行器,提出一种基于快速终端滑模面的有限时间自适应姿态控制方法,保证两旋翼飞行器对期望姿态角度的有限时间跟踪。构造快速终端滑模面,并设计分段连续函数避免滑模变量求导产生的奇异值问题。在此基础上,设计有限时间姿态控制器,并设计系统不确定上界的自适应更新律,抵消模型不确定性和外部干扰的影响。经李雅普诺夫方法证明滑模变量、姿态角误差、角速度误差等闭环信号最终一致有界,且有限时间收敛至平衡点邻域,收敛时间与系统状态变量初始值有关。最后,采用了矩形波和 曲线作为设定信号,设计相应的跟踪实验,并在两旋翼飞行器平台上验证所提控制方法的有效性,且分析双曲正切函数对系统控制输入影响,经实验测试其可减少系统颤振现象。  相似文献   

16.
This paper investigates the problem of robust control of nonlinear fractional-order dynamical systems in the presence of uncertainties. First, a novel switching surface is proposed and its finite-time stability to the origin is proved. Subsequently, using the sliding mode theory, a robust fractional control law is proposed to ensure the existence of the sliding motion in finite time. We use a fractional Lyapunov stability theory to prove the stability of the system in a given finite time. In order to avoid the chattering, which is inherent in conventional sliding mode controllers, we transfer the sign function of the control input into the fractional derivative of the control signal. The proposed chattering-free sliding mode technique is then applied for stabilisation of a broad class of three-dimensional fractional-order chaotic systems via a single variable driving control input. Simulation results reveal that the proposed fractional sliding mode controller works well for chaos control of fractional-order hyperchaotic Chen, chaotic Lorenz and chaotic Arneodo systems with no-chatter control inputs.  相似文献   

17.
交会对接模拟系统姿态跟踪有限时间抗干扰控制   总被引:1,自引:0,他引:1  
黄成  王岩 《控制与决策》2017,32(7):1189-1195
针对交会对接模拟系统的姿态同步问题,在存在扰动和系统不确定性的情况下,利用改进的快速非奇异终端滑模面和改进的自适应律设计两个有限时间抗干扰控制器.改进的自适应律保证了两个控制器的连续性和对干扰的鲁棒性,且第2个控制器能解决边界层理论存在的边界层内有限时间稳定性丢失的问题.李雅普诺夫理论推导和仿真结果表明,提出的两个控制器能保证系统的有限时间稳定性,系统能快速收敛到平衡点.  相似文献   

18.
针对一类不确定混沌系统,运用自适应滑模变结构控制方法,设计了相应的控制器和自适应律,实现了混沌系统的主从同步控制.通过构造Lyapunov函数在理论上证明了该同步方法的有效性,并且在不确定项上界未知的情况下,对系统未建模部分和噪声干扰具有很强的鲁棒性.最后以Duffing-Holmes系统为例,进行了混沌同步仿真,仿真结果表明该方法的有效性.  相似文献   

19.
Fractional control schemes are powerful tools for fulfilling robust tracking performance of different systems. This paper is the pioneering one in developing a fractional-order adaptive backstepping controller (FOABC) for a general class of integer-order and fractional-order (FO) systems. Model uncertainties and external disturbances can perturb system response and the controller is designed such that it can suppress the performance degradation caused by these factors. Moreover, rigorous mathematical analyses are carried out based on fractional Lyapunov theorems to ensure stability of the controlled systems. To justify the claims, worked-out examples including integer-order and FO systems are simulated. Good tracking performance of the proposed controller as well as robustness against uncertainties and insensitivity to external disturbances make it a good candidate for a broad range of systems. The results of implementing the proposed controller on different systems are compared with some newly proposed control approaches which highlight the outperformance of the FOABC.  相似文献   

20.
ABSTRACT

This article designs a novel adaptive trajectory tracking controller for nonholonomic wheeled mobile robot under kinematic and dynamic uncertainties. A new velocity controller, in which kinematic parameter is estimated, produces velocity command of the robot. The designed adaptive sliding mode dynamic controller incorporates an estimator term to compensate for the external disturbances and dynamic uncertainties and a feedback term to improve the closed-loop stability and account for the estimation error of external disturbances. The system stability is analyzed using Lyapunov theory. Computer simulations affirm the robustness of the designed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号