共查询到16条相似文献,搜索用时 84 毫秒
1.
为了获得高性能的涂层材料,采用激光熔覆的方法在45#钢基体上制备了MoFeCrTiWAlxSiy(x=0或1、y=0或1)高熵合金涂层,通过金相、XRD及硬度测试的手段重点探究了Al和Si两种元素对MoFeCrTiW高熵合金涂层组织与性能的影响。实验结果表明:Si的加入会促进金属间化合物大量的析出,细化晶粒效果明显,而且涂层的硬度显著提高,最高硬度可达839.3HV;Al的加入会抑制金属间化合物的析出,使涂层形成单一的BCC相结构,但会使涂层的硬度降低。同时添加Si和Al,能够获得组织细密、硬度较高的优质涂层。 相似文献
2.
利用激光熔覆技术在45钢表面制备了CoCrFeMnNiTix(x为Ti的摩尔比,x=0.25,0.50,0.75,1.00)高熵合金涂层。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、维氏硬度计、电化学工作站和摩擦磨损试验机等分析了Ti元素对CoCrFeMnNiTix高熵合金涂层微观组织和性能的影响。结果表明CoCrFeMnNiTix高熵合金涂层微观组织是由面心立方(FCC)固溶体相和TiC颗粒相组成的枝晶组织。随着Ti元素增加,TiC颗粒在晶内析出并逐渐增多,在Ti原子固溶引起的晶格畸变和TiC析出的共同影响下,晶格常数先增大后减小。Ti元素的添加引起了涂层的固溶强化和第二相强化,高熵合金涂层的显微硬度逐渐增高至364.5 HV0.3。掺杂Ti元素使高熵合金涂层的腐蚀机制由点蚀转变为晶间腐蚀,随着Ti元素含量增加,涂层活化阶段的晶间腐蚀加剧。涂层的磨损机制随Ti元素的增加由黏着磨损向氧化磨损与磨粒磨损转化,CoCrFeMnNiTi0.25涂层具有最好的耐蚀性能和耐磨性... 相似文献
3.
退火对激光熔覆FeCrNiCoMn高熵合金涂层组织与性能的影响 总被引:1,自引:0,他引:1
采用激光熔覆的方法在45#钢基体上制备了表面形貌良好的FeCrNiCoMn高熵合金涂层,为了研究该高熵合金涂层的抗高温软化性能,分别在550℃、700℃、900℃、1000℃、1160℃下对涂层进行了2h的退火实验。用扫描电镜(SEM)、X射线衍射仪(XRD)和显微硬度计分别研究了涂层退火前后的微观形貌、相结构及显微硬度的变化。结果表明,熔覆态涂层组织为柱状树枝晶结构,主要由面心立方固溶体(FCC)和少量体心立方固溶体(BCC)构成,其平均显微硬度为540HV0.2。550℃、700℃、900℃退火后涂层的组织长大不明显,900℃退火后涂层BCC固溶体相衍射峰变得非常明显,1000℃和1160℃退火后组织逐渐长大,相转变为单一的FCC结构。合金涂层经过不同温度退火后,显微硬度呈现先增大后减小的趋势,在900℃退火后,涂层硬度最高为665HV0.2,说明该合金涂层在低于900℃时具有良好的抗高温软化性能。 相似文献
4.
高熵合金具有很广泛的应用价值。目前,传统的铁基合金达不到高速切削的要求,为提高传统刀具材料在高速切削下的性能,国内外通过激光熔覆技术对传统刀具材料进行了改性。本文综述上述研究,同时也总结高熵合金块体与涂层的制备方法及研究现状。从热力学半经验判据设计合金成分出发,首先,介绍成分设计下的基础合金体系的显微组织与性能,探究添加不同合金化元素对涂层组织与性能的影响机制。其次,介绍退火和工艺参数对刀具表面激光熔覆高熔点高熵合金涂层的组织与性能的影响。最后展望高熔点高熵合金涂层的发展前景。 相似文献
5.
为了提高45#钢的耐磨性能,采用CO2激光熔覆技术进行了NiCoFeCrTi高熵合金涂层的制备实验。采用X射线衍射仪、扫描电镜和能谱仪分别分析了高熵合金熔涂层的物相结构、显微组织和化学成分。结果表明,由于高熵效应,NiCoFeCrTi涂层具有简单的面心立方相结构;在NiCoFeCrTi高熵合金涂层的熔覆层和结合区中未发现微裂纹,说明高熵合金与45#钢基底的冶金结合较好;熔覆涂层的表面显微硬度远远高于基底,维氏硬度可以达到940HV,是基底的3倍;表面熔覆了NiCoFeCrTi高熵合金的45#钢样品的磨损体积损失为5.010-10m3/m,低于45#钢的8.110-10m3/m。激光熔覆技术制备的NiCoFeCrTi高熵合金涂层可以显著提高45#钢耐磨损性能,对涂层应用研究具有较大参考意义。 相似文献
6.
采用激光熔覆工艺在40Cr钢表面制备了Fe0.5NiCoCrCuTi高熵合金涂层,利用带有能谱的扫描电子显微镜(SEM/EDS)、显微/维氏硬度计、摩擦磨损试验机、电化学工作站等对Fe0.5NiCoCrCuTi高熵合金微观结构进行分析并测试其硬度、耐磨性能、耐蚀性能。结果表明:Fe0.5NiCoCrCuTi高熵合金试样主要由涂层、热影响区及基体组成,涂层无气孔、裂纹等缺陷,与基体呈冶金结合;涂层主要由两种形貌的片状组织组成,晶粒排列紧密,晶粒表面分布着细小的粒子;涂层出现元素偏析,但程度较小;细晶强化、固溶强化、析出强化的共同作用使得Fe0.5NiCoCrCuTi涂层具有高硬度,表面最高硬度为857 HV,约为基体40Cr钢的3.3倍,高硬度及细小尺度析出物为涂层的耐磨性提供了保证;Fe0.5NiCoCrCuTi高熵合金涂层在3.5% NaCl和0.5 mol/L H2SO4溶液中的耐蚀性能优异,与304不锈钢相比,自腐蚀电流密度降低两三个数量级,自腐蚀电位分别正移0.230、0.161 V。 相似文献
7.
Fe基非晶合金具有优异的机械性能与耐蚀性。采用激光熔覆技术在304L不锈钢基体表面熔覆Fe-Cr-Ni-Co-B非晶粉末涂层,利用X射线衍射仪、光学显微镜、扫描电镜和电化学测试系统研究了涂层组织及耐蚀性能。研究结果表明,涂层组织涂层均匀、致密,无裂纹、气孔等缺陷。结合区为平面晶和柱状晶、熔覆层为丝条状树枝晶。熔覆层各区域由于成分和冷却速度的差异,致使树枝晶的大小和生长方向明显不同。涂层主要由Fe64Ni36和(FeCrNi)固溶体组成。熔覆层硬度分布较为均匀,涂层平均硬度约为480HV0.2,约是304L不锈钢基材的2.5倍。熔覆层的腐蚀电位高于304L基材,自腐蚀电流密度小于304L基材,具有较强的耐蚀性。 相似文献
8.
利用YAG脉冲固体激光器, 在高纯氩气的保护下, 选取优化了的激光工艺参数在45#钢表面制备FeAlCrNiSiC六元高熵合金涂层。主要采用OM、SEM、EDS、XRD和显微硬度等分析手段, 对实验制备的合金涂层的形貌、组织结构、成分、相结构、硬度及相关机理进行了研究。实验结果表明: 优化的激光熔覆工艺参数为功率85 W, 激光扫描速度为5 mm/s, 能量密度47 J/mm2, 搭接率50%。采用此优化工艺参数成功制备了与基体形成良好冶金结合的FeAlCrNiSiC高熵合金涂层。制备涂层的硬度达到了800 HV, 涂层的内部结构由条状等轴晶及网状枝晶组成, 组分偏析得到了有效缓解。合金涂层具有FCC结构的γ-Fe和BCC结构的FeAlCrNiSiC固溶体的简单物相, 合金元素Al、Cr、Si、Ni、C固溶在两种多组元固溶体中, 增加了晶格畸变, 使涂层具有高的硬度。 相似文献
9.
10.
为提升汽车用316不锈钢的耐磨性及硬度,在316不锈钢表面采用激光熔覆技术制备AlCoCrFeNi共晶高熵合金熔覆层。采用金相显微镜(OM)、扫描电镜(SEM)、电子背散射衍射分析技术(EBSD)、显微硬度计、往复式摩擦磨损试验机分别对共晶高熵合金熔覆层的微观组织、相组成、晶体学特征、表面显微硬度、耐磨性及磨损机理进行分析。具体结论如下:AlCoCrFeNi共晶高熵合金涂层的相组成为FCC相和BCC相。EBSD结果表明涂层的晶粒尺寸约为15.34μm,涂层内部具有较高的位错密度。涂层的表面显微硬度为311 HV±10.2 HV,约为316不锈钢基体的1.7倍。强化机制为固溶强化和位错强化。涂层的摩擦系数约为0.422,比磨损率为4.52×10-5 mm3/(N·m),均明显优于316不锈钢基体。磨损机理主要为磨粒磨损,并伴有轻微的黏着磨损。 相似文献
11.
镍基合金熔覆层的耐腐蚀、耐磨性、硬度,是45钢零件表面技术改性的理想熔覆层。为节约45钢的成本,增加45钢零件使用寿命,研究了激光熔覆Ni35+11%wc熔覆层的组织及耐腐蚀性。采用Xrd、维氏硬度计,磨损实验,电化学腐蚀方式研究熔覆层的组织和性能。结果表明:熔覆层的主相为Fe2Ni7Si20、NiSi,与基体冶金结合良好。熔覆层的硬度值均在730 HV左右,自腐蚀电位是-0.833 V,自腐蚀电流密度是 0.981 A/m2,熔覆层tafel曲线正向偏移耐腐蚀性有所提高,熔覆层的磨擦系数低于基体。 相似文献
12.
激光熔覆制备Al-Si-Cu-Fe准晶态合金涂层的研究 总被引:2,自引:0,他引:2
本文报道了在氮气气氛下 ,利用激光熔覆Al50 Si15Cu2 0 Fe15准晶粉末制备Al Si Cu Fe准晶态合金涂层。通过选取适当的激光熔覆参数 ,成功的制备了Al Si Cu Fe准晶态合金涂层。X射线衍射 (XRD)分析显示涂层中含有 1/ 1立方类似相α- (Al,Si)CuFe、β -Al(Si)Fe(Cu)相、λ -Al13 Fe4相和Al0 .7Fe3 Si0 .3 相。制备的涂层显微硬度达Hv914 ,α相和 β相中高的Si元素含量和类似相λ -Al13 Fe4的高含量是影响Al Si Cu Fe合金涂层硬度的主要因素。光学显微镜下显示Al Si Cu Fe合金涂层枝晶细密且取向比较一致 ,一次枝晶臂间距约为 2 5 μm ,且有明显的二次枝晶存在 ,二次枝晶臂间距约为 8μm。摩擦学试验显示 ,随着滑动速度的增加 ,涂层与对偶球之间的摩擦系数逐渐降低 ,且趋于稳定。 相似文献
13.
基于激光熔覆同轴送粉技术,在2Cr13不锈钢表面制备了Stellite6合金涂层,研究了工艺参数对涂层宏观形貌的影响,分析了涂层的显微组织和显微硬度。研究结果表明:在激光功率为2.5 kW,扫描速度为5 mm/s,送粉速率为13.2 g/min,搭接率为38 %时,可获得平整无缺陷的Stellite6涂层。熔覆层可分为一次熔化区、道间重熔区和层间重熔区。熔覆层的组织主要由胞状晶和树枝晶构成;相比于一次熔化区,道间重熔区和层间重熔区的组织较为粗大。通过合理调整道间停留时间和层间停留时间,可使熔覆层周期性循环组织中的一次熔化区的组织占比从54.9 %提升至73.1 %,从而提升熔覆层的整体硬度。 相似文献
14.
15.
通过6 kW 横流CO2激光器在40Cr钢表面激光熔覆了不同成分配比的WC/Co50复合涂层。运用金相光学显微镜(OM),扫描电镜(SEM),能谱仪(EDS)和X射线衍射(XRD)等表征手段分析了涂层结合区形貌、显微组织和物相组成,测试了复合涂层的显微硬度和磨损性能。结果表明,外加的WC颗粒在高能激光束作用下大部分发生溶解,涂层主要由碳化物WC、W2C、(Cr,Fe)7C3和W6C及Fe-Cr固溶体等物相组成。涂层中组织结构比较复杂,出现了树枝状初晶、包状过共晶,枝晶间共晶和硬质相颗粒。WC/Co50 熔覆涂层的最大显微硬度位于涂层次表面,其最大平均显微硬度为基材的1.93倍,且随着深度的增加逐渐降低。相同磨损条件下,复合涂层的磨损失重仅为基材的13.3%。 相似文献
16.
为弄清O含量对钢耐点蚀性能的影响规律,研究4种不同O含量的激光熔覆层样品的点蚀诱发和点蚀扩展行为.在pH为10的3%(质量分数)NaCl溶液中进行极化实验和交流阻抗实验,比较钢的点蚀诱发敏感性;在人造海水中进行模拟闭塞腐蚀电池试验,评价样品的点蚀扩展速度;用扫描电镜(SEM)和电子探针(EPMA)分析熔覆层的夹杂物组成... 相似文献