首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为降低导光镜面激光辐照区的温度梯度,利用有限体积法求解三维湍流传热方程,得到激光辐照区温度场分布,研究了矩形流道尺寸参数、冷却液的浓度与流速等因素对导光镜面平均温升和温升差的影响,并设计了双流道结构。结果表明,对于单流道,镜面辐照区温度场不随其几何中心呈对称分布,最高温度点位于流道下游;增大流道截面尺寸和冷却液流速可以提高换热效果;流道不同面之间的温度分布并不相同;乙二醇冷却液浓度越高,换热效果越差;相比于单流道结构,双流道结构的平均温升降低幅度最大可达17.79%,温升差降低幅度最大可达67.97%。  相似文献   

2.
流道截面参量对微通道水冷镜热变形的影响   总被引:1,自引:0,他引:1  
采用将有限体积法求解三维层流传热方程获得的温度场耦合到ANSYS进行热变形分析的方法,研究了流道截面形状和尺寸对微通道水冷镜内传热现象和镜面热畸变的影响。计算了矩形、梯形、圆形3种截面形状以及3种不同水力直径(百微米量级)下微通道水冷镜的平均换热系数、温升和镜面热变形。结果表明,同一条流道,各壁面温度并不随激光辐照面和镜面呈对称分布,最高温度偏向下游;侧壁的换热系数最大,且沿水流方向逐步减小;流道距进水口距离越大,其换热系数越小。在3种截面形状微通道中,减小截面尺寸可获得较大换热系数,且梯形截面微通道水冷镜能获得最小的镜面热变形量,在热流密度为14730 W/m2,水力直径为239μm,入口速度为2.54m/s的条件下,其镜面热变形仅为0.016μm。  相似文献   

3.
基于热传导理论,建立了高斯光束辐照硅反射镜的物理模型,利用多物理场数值分析软件COMSOL Multiphysics求解热传导方程,仿真计算得到镜面表面温度分布曲线以及镜面变形曲线,进一步结合光学仿真软件模拟计算,研究得到Si反射镜镜面的热畸变对输出光束质量的影响。结果表明:随着激光辐照时间的增大,反射镜热变形越显著,输出光束质量β因子越大,但β值的变化首先较快而后趋于平缓。随着辐照激光功率的增加,反射镜热变形越大,输出光束质量β因子不断增大。  相似文献   

4.
杜新宇  季凌飞  蒋毅坚 《中国激光》2007,34(s1):117-120
根据热传导理论,推导出了激光烧结陶瓷过程中的热传导方程;并采用数值模拟的方法,编写了基于有限差分法的计算机程序。在此基础上,分别模拟计算了在各种不同的烧结工艺条件下,CO2激光辐照Al2O3陶瓷的温度场,结果表明,采用激光辐照的办法烧结陶瓷可以使陶瓷在短时间内达到很高的温度。此外,还计算了烧结过程中材料的温度随空间的变化曲线,结果表明,平行于激光辐照方向的温度梯度大小不随烧结时间变化而只与激光功率有关,激光功率越大温度梯度越大。研究还发现:垂直激光辐照方向的温度梯度的大小取决于激光束的功率密度分布和光斑大小。  相似文献   

5.
针对激光与生物组织热效应研究中的温度场实时测量难题,分析了光纤F P温度传感器的工作原理,讨论了Fabry Perot(F P)腔的温度传感模型,设计、搭建了一种用于温度场测量的低细度光纤F P传感系统,基于该传感系统建立了激光辐照生物组织温度场的实时测量系统,实验研究了脉冲激光辐照下生物组织表皮距离激光源不同地方的温度分布。结果表明,该传感系统能有效实现生物组织温度场实时测量,体积小,外径仅为250 μm,对生物组织创伤小,温度响应时间小于1 s,反应较快,能满足实际需求。传感器距离激光源越远,探测到的组织温升越低,传感系统响应时间越长。  相似文献   

6.
裴旭  吴建华 《激光技术》2012,36(6):828-831
为了研究脉冲激光辐照金属材料时温度场的变化,采用有限元模拟软件对激光辐照材料的过程进行了模拟。得到了激光辐照过程中,材料表层及内部的瞬态温度场的变化情况。结果表明,在脉冲激光辐照金属材料过程中,激光热作用时间很短,热影响区仅限于激光光斑作用区域的材料表层。  相似文献   

7.
张华  李晓峰  杨文淑 《红外》2008,29(4):28-34
在在轨运行的热环境条件下,星载激光通信端机光学反射镜镜面的热变形会对空地激光通信链路性能产生严重影响。本文利用有限元分析软件ANSYS建立了星上激光通信端机光学反射镜的有限元模型,并对镜体在压圈固定方式与压板固定方式下的热变形进行了仿真。利用ZEMAX光学仿真软件就镜面的变形对光学系统产生的影响进行了分析。仿真结果表明,反射镜面的热变形将导致传输光束扩展、波前畸变,这些影响会使探测器接收功率降低,从而恶化空地激光通信链路的性能。因此为了建立稳定高效的空地激光通信链路,必须在镜面材料选择、镜体应力释放方式、镜体大小选择等方面进行合理设计。  相似文献   

8.
为了分析不同功率激光对金属/炸药结构内部温度分布的影响以及炸药爆炸的可能性,利用有限元软件,考虑金属材料的物性参量和钢靶表面能量耦合系数随温度的变化规律,建立了在功率分别为55kW,60kW和65kW的激光辐照下金属/炸药结构的3维温度分布模型,得到了光斑中心轴线方向温度分布和金属表面中心及金属与炸药接触面的温度随时间变化曲线,在55kW,60kW和65kW 3种功率不同的激光辐照下,5s末炸药表面的温度分别为521K,550K和581K。结果表明,功率越大炸药获得的温升越大越易引起爆炸,功率增加时炸药获得的温度增量在不同时刻有所不同,在一定辐照时间内,炸药的温升发生在与金属接触的小区域内。这对激光辐照金属/炸药结构的深入研究具有指导意义。  相似文献   

9.
针对激光辐照光学透镜产生的热效应问题,选用有限元法推导了光学透镜模型的热传导方程的有限元求解格式,基于Matlab编程实现了计算光学透镜在脉冲激光辐照下的温度场分布。研究结果表明,光学透镜的温度随辐照激光光斑半径的增大而减小;随激光脉冲数目的增多而增大,但是由激光能量的累积效应所导致的材料温升并不显著;随激光功率的增大而增大,是影响材料温升的显著因素,当功率增大到一定数值时将造成光学透镜的损伤,文中激光功率达到250 mW时造成材料的熔融损伤。  相似文献   

10.
激光辐照下光学薄膜元件温升的有限元分析   总被引:4,自引:2,他引:2  
实验测量了波长1 064 nm,10 kHz高重复频率激光辐照下镀制Ta2O5/SiO2多层膜的 K9、石英玻璃、白宝石高反膜元件温升变化.有限元分析的结果与实验结果相一致.用ANSYS程序计算了不同基板、空气对流系数及基板尺寸对激光辐照中心点温度的影响.结果表明:白宝石基片的薄膜元件激光辐照点的温度最低,其次是石英,K9玻璃基片的薄膜元件激光辐照点温度最高.空气对流系数在大光斑或长时间辐照时对激光辐照点温度影响较大,在小光斑或短时间辐照时对激光辐照点温度影响甚微,可忽略不计.基板越厚,基板直径越大,激光辐照中心点温度越低,基板直径比厚度更能影响激光辐照中心点温度变化.  相似文献   

11.
兰硕  李新南  武春风  李梦庆  韩西萌 《红外与激光工程》2018,47(10):1020003-1020003(6)
为了研究高功率连续激光辐照过程中快反镜的热性能变化问题,文中利用多物理场仿真分析软件建立了融凝石英(fused silica)、微晶(zerodur)、碳化硅(SiC)三种材料制作的快反镜传热学和结构力学耦合非稳态模型,通过泽尼克多项式算法对高功率激光辐照快反镜热应力下的光学波前进行拟合。研究结果表明:在同等激光功率辐照条件下,微晶材料制作的快反镜温升最小,形变最小。根据仿真结果优选微晶作为快反镜镜体材料,基于泽尼克多项式对快反镜波前热畸变进行仿真分析,计算得到波前热像差以活塞、球差、离焦等为主导,可为波前校正工程应用提供理论参考。  相似文献   

12.
梅艳莹  杨涛 《激光技术》2014,38(3):375-379
为了进一步减小白宝石(Al2O3)高反镜在强光辐照下的热变形,提高光束质量,研究了白宝石高反镜厚度、直径尺寸对热变形的影响。采用以极坐标表示的热传导方程和热变形公式来描述白宝石高反镜的温度场分布和位移场分布;在有限元分析软件中建立数值计算模型,并计算了不同厚度、直径尺寸下的温度场和位移场,得到了热变形随厚度尺寸和直径尺寸变化的规律。结果表明,影响白宝石高反镜反射面峰谷值变化的主要因素是温度,而尺寸变化对温度和刚度均有影响;选择合适的高反镜直径和厚度尺寸,可以有效降低镜面温升,同时得到合适的轴向结构刚度,从而减小反射镜镜面热变形。该研究结果对强光辐照下白宝石高反镜尺寸设计和选择具有一定的参考价值。  相似文献   

13.
张耀平  樊峻棋  龙国云 《红外与激光工程》2016,45(11):1136002-1136002(5)
利用有限元分析软件数值模拟了固体激光器系统中由单晶硅(Silicon)、石英(Silica)与超低膨胀玻璃(ULE)等不同材料制作的变形反射镜受激光辐照下的热畸变特性。计算结果表明:当入射激光功率密度为0.225 kW/cm2,激光照射时间为10 s,镜面反射率为99.9%时,三种材料的变形镜的最大温升分别为0.804、6.751与7.122℃,最大热变形分别为0.049 3、0.034 8与0.005 m,相比之下,单晶硅温升较小,超低膨胀玻璃(ULE)的变形与应力最小,ULE是未来比较理想的镜面材料。最后,对变形镜在长脉冲激光辐照下也进行了计算与分析。  相似文献   

14.
潘建宇  曹银花  闫岸如  关娇阳  孟娇  郭照师  李景  兰天  王智勇 《红外与激光工程》2021,50(12):20210037-1-20210037-8
针对大功率半导体激光器散热系统展开设计研究。首先,对水冷散热系统的流体通道中的冷却液进行了流体分析,结果表明在传统矩形流体通道结构中,冷却液在进液口处和弯度较小处容易产生湍流空洞。湍流空洞不仅会产生空泡腐蚀效应,还会导致靠近热源的上层冷却液填充不充分,降低系统的散热效率;其次,在传统流体通道结构的基础上,提出了一种非典型宏通道结构的优化模型。采用有限元分析软件Fluent分别对散热模型的分布和激光器模块器件的分布进行了数值模拟,流场结果表明优化模型中冷却液流动时没有湍流空洞产生,散热系统可靠性更高,冷却液在流体通道的上层填充效果更好,同时解决了传统模型中流体在局部流道中流速缓慢的问题,使散热系统具备更良好的散热性能。接着又通过温度场仿真结果得出,优化模型搭建的散热系统工作时激光器最高温度可降低2 ℃,且热源1上温度更均匀,热源3上温度降低1.25 ℃;最后,在激光器满功率输出情况下进行的散热实验对比,获得的实验数据与仿真结果基本一致。  相似文献   

15.
为了研究TEA CO2激光重复频率对远场光束特性的影响,首先采用有限元方法计算了不同重复频率下反射镜的温度场和热变形分布,然后采用协方差矩阵法对镜面热变形进行了Zernike拟合,最后结合衍射的角谱传播理论和功率谱反演法分析了不同重频TEA CO2激光经过内光路热畸变作用后的远场光束特性。研究表明:在净吸收能量相同的情况下,随着重复频率的增大,反射镜的温度逐渐升高,热变形量逐渐增大,经过内光路热畸变作用后,远场光束的Sr和平均能量密度Ed逐渐减小,参数逐渐增大,光束质量逐渐变差;对于TEA CO2激光,重频为300 Hz的Ed值仅为10 Hz的40%,远场光束的峰值光强下降了43%,光斑展宽了近60%。文中的研究结果为TEA CO2激光发射系统的优化设计提供可靠的依据。  相似文献   

16.
夏金安  程祖海 《激光技术》1996,20(6):380-384
本文运用数值传热学中全隐差分格式交替方向块迭代法,对周边绝热强激光照射非稳态条件下硅镜的温度及挠变形进行了数值模拟,给出了形变随激光功率、光斑直径、镜片直径、镜片厚度以及照射时间等参数的变化规律,并对镜片局部最高温度的变化作了探讨和分析.  相似文献   

17.
Formation mechanism of residual thin materials at the bottom of a microvia processed with CO2 laser is studied with a bromine (Br)-containing epoxy film designed for sequential build-up printed wiring boards. By observing Br content distribution in a cross section of the epoxy film after laser processing, it is estimated that the film around the via is heated up to 1600 K and that the residual thin film at the bottom of the via is heated up to 2000 K upon laser irradiation. Based on heat transfer simulations for epoxy and copper layer structures, the epoxy film within a 0.1-μm distance from the copper surface is unable to be removed by laser irradiation because the temperature of this region cannot be heated above the decomposition temperature of ≈2500 K due to a large heat flow from the epoxy layer to the copper  相似文献   

18.
Cr,Tm,Ho:YAG激光器的研究及设计   总被引:2,自引:0,他引:2  
从晶体的吸收光谱、能量转移及其受温度的影响对Cr,Tm,Ho:YAG激光器的工作特性进行了理论分析。通过试验分析了泵浦功率、谐振腔结构、输出镜透过率及冷却对激光输出的总合影响,探讨了激光系统的优化设计方法。试验中在重复频率为1Hz情况下得到单脉冲能量4.5 J,5Hz情况下平均功率15W的激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号