首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以Mg/Al-CO_3-LDH为前体,采用离子交换法制备了脂肪酸(丁二酸、己二酸、癸二酸、酒石酸)和芳香酸(笨甲酸、水杨酸)柱撑水滑石复合材料,并利用XRD、FT-IR、TG和DTA技术对样品进行了结构表征和性能测试.结果表明,通过控制离子交换条件,6种有机酸根离子可以插入水滑石的层间完全取代CO_3~(2-),形成具有超分子结构稳定的有机酸阴离子/LDHs复合材料.  相似文献   

2.
H.T. Zhang  J.Q. Song 《Materials Letters》2011,65(21-22):3292-3294
Dissimilar material welding between 1 mm-thick magnesium and aluminum alloy plates in lap form was performed using the MIG process with zinc foil as the interlayer material. The zinc foil acted as a barrier layer that restrained reactions between the aluminum and magnesium atoms, and a crack-free lap joint of dissimilar materials was obtained. The interfacial layer between the fusion zone and the unmelted magnesium substrate was mainly composed of Mg–Zn binary intermetallic compounds. The tensile strength of the lap joint was 64 MPa, and a fracture occurred at the interface between the fusion zone and the unmelted magnesium alloy.  相似文献   

3.
Organic–inorganic nanohybrids, 3,4-dihydroxycinnamic acid/layered double hydroxide (CA/LDH), 4-hydroxy-3,5-dimethoxycinnamic acid/layered double hydroxide (SA/LDH), and 3-amino-5-triflouromethylbenzoic acid/layered double hydroxide (FBA/LDH) have been synthesized by co-precipitation reaction of organic ultraviolet (UV) ray absorbents such as 3,4-dihydroxycinnamic acid, 4-hydroxy-3,5-dimethoxycinnamic acid, 3-amino-5-triflouromethylbenzoic and Zn2Al layered double hydroxide (LDH). Detailed structural and absorption properties of the nanohybrids were studied by using X-ray diffraction (XRD), FT-IR and UV-Vis transmittance spectra which revealed that organic UV absorbents have been intercalated into the interlayer spaces of LDH and all nanohybrids showed excellent UV ray absorption. All the nanohybrids showed a lower catalytic activity as compared to the net organic UV ray absorbents by applying air oxidation to castor oil.  相似文献   

4.
Mg/HA (10 wt.%, 20 wt.% and 30 wt.%) composites were prepared by pure magnesium and hydroxyapatite (HA) powders using powder metallurgy (PM) method. The microstructure, mechanical property, corrosion and cytotoxicity of these Mg/HA composites were studied, with the bulk pure magnesium as control. The results showed that the main constitutional phases of Mg/HA composites were simply α-Mg and HA. The HA particulates distributed uniformly in Mg matrix for Mg/10HA composite, and few HA clustering occasionally spread over the Mg/20HA composite, whereas severe agglomeration of HA particulates could be seen for Mg/30HA composite. The yield tensile strength of Mg/10HA composite increased compared with that of the as-extruded bulk pure magnesium, yet the yield tensile strength, ultimate tensile strength and ductility of Mg/HA composites decreased with the further increase of HA content. The corrosion rate of Mg/HA composites increased with the increment of HA content. The cytotoxicity tests indicated that Mg/10HA extract showed no toxicity to L-929 cells, whereas Mg/20HA and Mg/30HA composite extracts induced significantly reduced cell viability.  相似文献   

5.
Binary Mg–xCa alloys and the quaternary Mg–Ca–Mn–xZn were studied to investigate their bio-corrosion and mechanical properties. The surface morphology of specimens was characterized by X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results of mechanical properties show that the yield strength (YS), ultimate tensile strength (UTS) and elongation of quaternary alloy increased significantly with the addition of zinc (Zn) up to 4 wt.%. However, further addition of Zn content beyond 4 wt.% did not improve yield strength and ultimate tensile strength. In contrast, increasing calcium (Ca) content has a deleterious effect on binary Mg–Ca alloys. Compression tests of the magnesium (Mg) alloys revealed that the compression strength of quaternary alloy was higher than that of binary alloy. However, binary Mg–Ca alloy showed higher reduction in compression strength after immersion in simulated body fluid. The bio-corrosion behaviour of the binary and quaternary Mg alloys were investigated using immersion tests and electrochemical tests. Electrochemical tests shows that the corrosion potential (Ecorr) of binary Mg–2Ca significantly shifted toward nobeler direction from −1996.8 to −1616.6 mVSCE with the addition of 0.5 wt.% manganese (Mn) and 2 wt.% Zn content. However, further addition of Zn to 7 wt.% into quaternary alloy has the reverse effect. Immersion tests show that the quaternary alloy accompanied by two secondary phases presented higher corrosion resistance compared to binary alloys with single secondary phase. The degradation behaviour demonstrates that Mg–2Ca–0.5Mn–2Zn alloy had the lowest degradation rate among quaternary alloys. In contrast, the binary Mg–2Ca alloy demonstrated higher corrosion rates, with Mg–4Ca alloy having the highest rating. Our analysis showed the Mg–2Ca–0.5Mn–2Zn alloy with suitable mechanical properties and excellent corrosion resistance can be used as biodegradable implants.  相似文献   

6.
In this study a kind of patent binary Mg–6 wt.%Zn magnesium alloy was investigated as degradable biomedical material. The results of in vitro degradation including electrochemical measurements and immersion tests in simulated body fluid (SBF) revealed that zinc could elevate both the corrosion potential and Faraday charge transfer resistance of magnesium and thus improve the corrosion resistance. XRD and EDS analysis proved that the corrosion products on the surface of Mg–Zn contained hydroxyapatite (HA), Mg(OH)2 and other Mg/Ca phosphates, which could reduce the degradation rate. The degradation process of magnesium alloy and the mechanism of corrosion layer formation were also discussed in this work, i.e. the byproducts of degradation of magnesium, Mg2+ and OH?, reacted with the phosphate and Ca2+ in the SBF, thus the corrosion layer containing HA, Mg(OH)2 and other magnesium-substituted apatite precipitated in corrosion pits and covered the surface of magnesium alloy.The hemolysis test found that the hemolysis rate of Mg–Zn was 3.4%, which is lower than the safe value of 5% according to ISO 10993-4. For the cell culture experiments, after 2 h incubation the pre-osteoblastic cell MC3T3-E1 was able to adhere and spread on the corrosion layer of Mg–Zn alloy, indicating that despite the fluctuation of pH value of DMEM culture solution, Mg–Zn alloy could still support the earlier adhesion of pre-osteoblastic cells on the surface. Hemolysis and adhesion of cells display good biocompatibility of Mg–Zn alloy in vitro.  相似文献   

7.
The effect of oxide additives on the low-temperature sintering and dielectric properties of microwave dielectrics (Zn,Mg)TiO3 have been investigated. The study showed that a small amount of V2O5 accelerated the densification rate of (Zn,Mg)TiO3 dielectrics as compared with the other oxide additives. In addition to lower sintering temperature of zinc titanate dielectrics, the addition of V2O5 decreased the decomposition temperature of (Zn,Mg)TiO3. Additionally, the increased amount of magnesium raised both the sintering temperature and the decomposition temperature of (Zn,Mg)TiO3. Relative permittivity of (Zn,Mg)TiO3 dielectrics decreased accompanied with increase of Q × f as the amount of magnesium content increased. The temperature coefficient of resonant frequency of (Zn,Mg)TiO3 shifted to more negative values as the amount of magnesium increased.  相似文献   

8.
The coating layer composition depth profiles and element chemical states of zinc–magnesium alloy coated steel were investigated by X-ray photoelectron spectroscopy depth profiling. Through the analysis of photoelectron signals and Auger signals of different elements on different depth planes of the coating layer, it can be found that the surface of the coating layer contains MgCO3, MgO, Mg(OH)2, metallic Mg, metallic Zn and some complex zinc compounds. Under the surface, there is a Zn2Mg alloy layer with the thickness of about 300 nm accompanied with MgO and Mg(OH)2 in the layer. There is a transitional layer with the thickness of about 200 nm between the Zn2Mg alloy layer and the pure Zn layer, whose components consist of zinc–magnesium alloy without fixed stoichiometry, a little MgO and a little Mg(OH)2.  相似文献   

9.
In this research, binary Mg–Zn (up to 3 wt% Zn) and ternary Mg–Zn–Gd (up to 3 wt% Gd, 3 wt% Zn) alloys were prepared by induction melting in an argon atmosphere. The structures of these alloys were characterized using light and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence. In addition, Brinell hardness measurements were taken to supplement these studies. Corrosion behavior was evaluated by immersion tests and potentiodynamic measurements in a physiological solution (9 g/l NaCl). Depending on the composition, structures of the as-cast alloys contained α-Mg dendrites, MgZn, Mg5Gd and Mg3Gd2Zn3 phases. Compared to pure Mg, zinc improved the corrosion resistance of binary Mg–Zn. Gadolinium also improved the corrosion resistance in the case of Mg–1Zn–3Gd alloy. The highest corrosion rate was observed for Mg–3Zn–3Gd alloy. Our results improve the understanding of the relationships between the structure and corrosion behavior of our studied alloy systems.  相似文献   

10.
The zinc–aluminum (Zn–Al) alloy coating with excellent wear and corrosion resistance was fabricated on the surface of magnesium substrate (AZ31) using thermal diffusion technique. The microstructure, phase constitution and chemical composition were investigated. The experimental observation exhibited that the interfacial microstructures were composed of network eutectic structures and lamellar eutectoid structures at heating temperature of 350 °C for holding time of 30 min under 0.1 MPa in a vacuum of 10−3 Pa. X-ray diffraction (XRD) pattern analysis identified that α-Mg, Mg7Zn3 and MgZn phases were formed in the diffusion layer. The interdiffusion of Mg and Al atoms were restricted by Mg–Zn intermetallic compounds (IMCs). The value of microhardness at the diffusion layer increased due to the formation of Mg–Zn eutectic phases. This technique is beneficial to improving poor wear and corrosion resistance of magnesium alloy.  相似文献   

11.
Polyacrylate intercalated bentonite superabsorbent hybrid had been prepared by means of solution polymerization with intercalating, polymerizing and crosslinking reaction. The partially neutralized acrylic acid (NaA) was intercalated, polymerized and crosslinked to bentonite. The initiator was potassium persulfate and the crosslinking agent was sugar. The structure of the polyacrylate/hybrid was determined by FT-IR and XRD. The results showed that bentonite was intercalated by polyacrylate. The layers' spacing of bentonite was enlarged. The various factors, such as the degree of neutralization, the consumption of monomer, the amount of initiator and crosslinking agent and the amount of bentonite, which affected the resin's water absorbency, were studied through orthogonal experiments. The optimum conditions showed that the ratio (wt) of bentonite to monomer was 1/2, the degree of neutralization was 75% (mol), the initiator content was 3%, and the crosslinker content was 5%. The cost of the superabsorbent has decreased by 30%, whereas its water absorbency was about 120 g/g for water, and 30-36 g/g for saline solution.  相似文献   

12.
现有的镁合金氰化电镀,镀液不稳定,镀层性能不佳.从前处理,包括碱洗、酸洗、活化、浸锌、退锌和二次浸锌方面研究了适合镁合金压铸件无氰电镀的环保型工艺.结果表明:在浸锌层上得到的碱性电镀锌层结构致密、耐蚀性好;在浸锌层上可进行有机磷酸体系电镀铜,镀层外现、结合力良好,孔隙率低.  相似文献   

13.
14.
A versatile homogeneous solution growth method is developed for depositing (Zn,Mg)O:Zn2+ nanophosphor films from aqueous solutions of zinc, magnesium and triethanolamine. The effect of pH on the structural and morphology of (Zn,Mg)O:Zn2+ nanophosphor films was studied and the optimum deposition conditions have been outlined. The deposition rate of nanophosphor film at neutral pH condition was comparatively larger than in basic conditions. The as-deposited films exhibit good crystallinity with hexagonal wurtzite crystalline structure and preferably oriented along (0 0 2) plane. With time, the nanophosphor films appeared dense on the glass substrate comprising of particle sizes of 30-50 nm. Upon excitation at 326 nm, photoluminescence (PL) spectrum corresponding to deep level impurities (∼ 410-530 nm) was completely masked by the strong blue-green emission at ∼ 456 nm. The ratio of Mg to Zn was optimized for maximum PL brightness whereas the optical transmittance of the nanophosphor film decreased with increasing thickness.  相似文献   

15.
In this study, olsalazine (3,3′-azobis 6-hydroxy benzoic acid) was intercalated into Mg–Al layered double hydroxides (LDHs) by ion exchange or coprecipitation methods to obtain olsalazine–LDH nanohybrids. Powder X-ray diffraction (XRD), Fourier transform infrared spectra and elemental analyses indicate a successful intercalation of olsalazine with a vertical orientation. Intercalation of organic anion of olsalazine into Mg–Al LDH caused the interlayer spacing of LDH to increase from 0.884 to 1.665–1.666?nm as determined by XRD studies. Thermogravimetric analyses propose that the thermal stability of the intercalated organic anion of olsalazine is largely improved compared to the pure form before intercalation due to the host–guest interaction involving the hydrogen bond. Furthermore, in vitro drug release experiments in pH 7.4 phosphate buffer solution have been investigated. The drug molecules during dissolution were exchanged with anions in the medium, thus leading to a slow release, much slower than when the same matrix was used simply mixed with the drug.  相似文献   

16.
《Materials Research Bulletin》2003,38(15):1957-1964
Powders of a Pb[(Zn1/3Ta2/3)0.2(Zn1/3Nb2/3)0.6Ti0.2]O3 system with gradual replacement of Zn by Mg were prepared by employing a B-site precursor method and developed structures were studied by X-ray diffractometry. Dielectric properties of the sintered ceramics were characterized under weak-field low-frequency conditions. A high maximum dielectric constant value of 38,000 (@1 kHz) was realized when 3/4 of octahedral Zn was replaced by Mg. Field-dependent polarization responses were also monitored at various temperatures to investigate ferroelectricity. Microstructures of the fractured ceramics were examined using a scanning electron microscope.  相似文献   

17.
The bio-corrosion properties of Mg–Zn–Mn alloys with and without Y in Hank's solution at 37 °C were investigated by using electrochemical test and electrochemical impedance spectra (EIS). The results of open circuit potential (OCP) and polarization tests indicated that Y could reduce the cathodic current density. A passivative stage appeared in the Tafel curve of the Y containing magnesium alloy, indicating that a passivative film was formed on the surface of the Y containing magnesium alloy. EIS results showed that the Y containing alloy had higher charge transfer resistance and film resistance, but lower double layer capacity than the alloy without the Y element. The surface reaction product identification by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the surface corrosion products were hydroxide and phosphate (Mg3Ca3(PO4)4) for Mg–Zn–Mn alloy and phosphate (MgNaPO4) for the Y containing Mg–Zn–Mn alloys. The XPS results also showed that a Y2O3 protective film was formed on the surface of the Y containing magnesium alloy which contributed mainly to the low cathodic current density and the high resistance.  相似文献   

18.
In this present work nano coconut shell charcoal (ncsc) and silicon carbide (SiC) particulates were reinforced with AZ31B Mg alloy and suitable magnesium composite was developed by using the powder metallurgy technique followed by hot extrusion. Density measurement of the Mg composites revealed that the addition of ncsc significantly improved the density of the composites and porosity measurement showed minimal porosity. The microstructure of the composites showed even distribution of the ncsc in the AZ31B/3SiC Mg composite. The compressive and impact behaviour of the samples were characterized, the results showed that on increasing the weight percentage of ncsc in AZ31B/3SiC/0.5ncsc Mg composites the mechanical properties such as ultimate compressive strength, 0.2% yield strength, ductility and impact strength decreased. The scanning electron microscope (SEM) analysis of fractured surface of AZ31B Mg alloy and AZ31B/3SiC/0.5ncsc Mg composites showed quasi-cleavage fracture. The presence of ncsc above 0.5 wt% composites revealed mixture of quasi cleavage planes and some dimples.  相似文献   

19.
Piezoelectric thin film zinc oxide (ZnO) and its ternary alloy magnesium zinc oxide (Mg/sub x/Zn/sub 1-x/O) have broad applications in transducers, resonators, and filters. In this work, we present a new bulk acoustic wave (BAW) structure consisting of Al/Mg/sub x/Zn/sub 1-x/O/n/sup +/-ZnO/r-sapphire, where Al and n/sup +/ type ZnO serve as the top and bottom electrode, respectively. The epitaxial Mg/sub x/Zn/sub 1-x/O films have the same epitaxial relationships with the substrate as ZnO on r-Al/sub 2/O/sub 3/, resulting in the c-axis of the Mg/sub x/Zn/sub 1-x/O being in the growth plane. This relationship promotes shear bulk wave propagation that affords sensing in liquid phase media without the dampening effects found in longitudinal wave mode BAW devices. The BAW velocity and electromechanical coupling coefficient of Mg/sub x/Zn/sub 1-x/O can be tailored by varying the Mg composition, which provides an alternative and complementary method to adjust the BAW characteristics by changing the piezoelectric film thickness. This provides flexibility to design the operating frequencies of thin film bulk acoustic wave devices. Frequency responses of devices with two acoustic wave modes propagating in the specified structure are analyzed using a transmission line model. Measured results show good agreement with simulation.  相似文献   

20.
A new biodegradable magnesium–zinc–strontium (Mg–Zn–Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8 h improved the mechanical properties when compared to those of the as-cast alloy. Specifically, the aged ZSr41 alloy had an ultimate tensile strength of 270 MPa, Vickers hardness of 71.5 HV, and elongation at failure of 12.8%. The mechanical properties of the ZSr41 alloy were superior as compared with those of pure magnesium and met the requirements for load-bearing medical implants. Furthermore, the immersion of the ZSr41 alloy in SBF showed a degradation mode that progressed cyclically, alternating between pitting and localized corrosion. The steady-state average degradation rate of the aged ZSr41 alloy in SBF was 0.96 g/(m2·hr), while the pH of SBF immersion solution increased. The corrosion current density of the ZSr41 alloy in SBF solution was 0.41 mA/mm2, which was much lower than 1.67 mA/mm2 for pure Mg under the same conditions. In summary, compared to pure Mg, the mechanical properties of the new ZSr41 alloy improved while the degradation rate decreased due to the addition of Zn and Sr alloying elements and specific processing conditions. The superior mechanical properties and corrosion resistance of the new ZSr41 alloy make it a promising alloy for next-generation implant applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号