首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Biaxial fatigue tests were conducted on a high strength spring steel using hour-glass shaped smooth specimens. Four types of loading system were employed, i.e. (a) fully reversed cyclic torsion, (b) uniaxial push—pull, (c) fully reversed torsion with a superimposed axial static tension or compression stress, and (d) uniaxial push—pull with a superimposed static torque, to evaluate the effects of mean stress on the cyclic stress—strain response and short fatigue crack growth behaviour. Experimental results indicate that a biaxial mean stress has no apparent influence on the stress—strain response in torsion, however a superimposed tensile mean stress was detrimental to torsional fatigue strength. Similarly a superimposed static shear stress reduced the push—pull fatigue lifetime. A compressive mean stress was seen to be beneficial to torsion fatigue life. The role of mean stress on fatigue lifetime, under mixed mode loading, was investigated through experimental observations and theoretical analyses of short crack initiation and propagation. Using a plastic replication technique the effects of biaxial mean stress on both Stage I (mode II) and Stage II (mode I) short cracks were evaluated and analysed in detail. A two stage biaxial short fatigue crack growth model incorporating the influence of mean stress was subsequently developed and applied to correlate data of crack growth rate and fatigue life.  相似文献   

2.
A fatigue crack is often initiated by a localized cyclic plastic deformation in a crystal where the active slip plane coincides with the plane of maximum shear stress. Once a crack is initiated, the crack will propagate on the maximum shear plane for a while and, in the majority of the cases, will eventually change to the plane of the applied tensile stress. The “shear” and “tensile” modes of fatigue crack propagation are termed stage I and stage II fatigue crack growth. They are also known as mode II and mode I fatigue crack growth. However, the mechanism of the tensile mode fatigue crack propagation is shear in nature. Considerable progress has been made recently in the understanding of mode II fatigue crack growth. This paper reviews the various test methods and related data analyses. The combined mode I and mode II elastic crack tip stress field is reviewed. The development and the design of the compact shear specimen are described and the results of fatigue crack growth tests using the compact shear specimens are reviewed. The fatigue crack growth tests and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center cracked panels and the double edge cracked plates under cyclic shear loading are reviewed and analyzed in detail.  相似文献   

3.
Prediction model for the growth rates of short cracks based on Kmax‐constant tests with M(T) specimens The fatigue crack growth behaviour of short corner cracks in the Aluminium alloys Al 6013‐T6 and Al 2524‐T351 was investigated. The aim was to determine the crack growth rates of small corner cracks at stress ratios of R = 0.1, R = 0.7 and R = 0.8 and to develop a method to predict these crack growth rates from fatigue crack growth curves determined for long cracks. Corner cracks were introduced into short crack specimens, similar to M(T)‐specimens, at one side of a hole (Ø = 4.8 mm) by cyclic compression (R = 20). The pre‐cracks were smaller than 100 μm (notch + precrack). A completely new method was used to cut very small notches (10–50 μm) into the specimens with a Focussed Ion Beam. The results of the fatigue crack growth tests with short corner cracks were compared with long fatigue crack growth test data. The short cracks grew at ΔK‐values below the threshold for long cracks at the same stress ratio. They also grew faster than long cracks at the same ΔK‐values and the same stress ratios. A model was developed on the basis of Kmax‐constant tests with long cracks that gives a good and conservative prediction of the short crack growth rates.  相似文献   

4.
Abstract   In situ scanning electron microscope observations of short crack growth in both a poly-crystal and a single-crystal alloy revealed that fatigue cracks may grow in a shear decohesion mode over a length that is several times the grain size, far beyond the conventional stage I regime. In the poly-crystal aluminium alloy 2024-T351, fatigue cracks were found to continue to grow along one shear band even after two mutually perpendicular shear bands had formed at the crack tip. For the single-crystal alloy specimen with the loading axis being nearly perpendicular to its main shear plane, mode I fatigue cracks were found to grow along the shear band. These two types of fatigue crack growth pose a significant challenge to the existing fatigue crack growth correlating parameters that are based on crack-tip opening displacement. In particular, it has been found that the cyclic crack-tip opening displacement, which accounts for both large-scale yielding and the lack of plasticity-induced crack closure, is unable to unify the growth rates of short and long cracks in aluminium 2024-T351, suggesting a possible dependence of crack growth threshold on crack length.  相似文献   

5.
The mechanism of mixed‐mode fatigue crack propagation was investigated in pure aluminum. Push‐pull fatigue tests were performed using two types of specimens. One was a round bar specimen having a blind hole, one was a plate specimen having a slit. The slit direction cut in the specimen was perpendicular or inclined 45 degrees relative to the centre of the specimen axis. In both cases, cracks propagated by mode I or by the mixed mode combining mode I and shear mode, depending on the testing conditions. In these cases the crack propagation rate was evaluated with a modified effective stress intensity factor range. Crack propagation retardation was observed in some specimens. However, it was found that the crack propagation rate could also be evaluated by the effective stress intensity factor range independent of the crack propagation mode.  相似文献   

6.
Aluminum alloy A356‐T6 was subjected to fully reversed cyclic loading under tension, torsion and combined loading. Results indicate that endurance limits are governed by maximum principal stress. Fractography demonstrates long shear mode III propagation with multiple initiation sites under torsion. Under other loadings, fracture surfaces show unique initiation sites coincidental to defects and mode I crack propagation. Using the replica technique, it has been shown that the initiation life is negligible for fatigue lives close to 106 cycles for combined loading. The natural crack growth rate has also been shown to be comparable to long cracks in similar materials.  相似文献   

7.
8.
ABSTRACT The fatigue crack growth behaviour of 0.47% carbon steel was studied under mode II and III loadings. Mode II fatigue crack growth tests were carried out using specially designed double cantilever (DC) type specimens in order to measure the mode II threshold stress intensity factor range, ΔKIIth. The relationship ΔKIIth > ΔKIth caused crack branching from mode II to I after a crack reached the mode II threshold. Torsion fatigue tests on circumferentially cracked specimens were carried out to study the mechanisms of both mode III crack growth and of the formation of the factory‐roof crack surface morphology. A change in microstructure occurred at a crack tip during crack growth in both mode II and mode III shear cracks. It is presumed that the crack growth mechanisms in mode II and in mode III are essentially the same. Detailed fractographic investigation showed that factory‐roofs were formed by crack branching into mode I. Crack branching started from small semi‐elliptical cracks nucleated by shear at the tip of the original circumferential crack.  相似文献   

9.
Nickel‐based single‐crystal superalloys are predominantly used for turbine blades in aircraft engines and land‐based gas turbines. Understanding and predicting the fatigue failure of Ni‐based single‐crystal superalloys are critical to ensure the safety of these components during operation. In this paper, low‐cycle fatigue experiments were carried out to investigate cyclic deformation of a nickel‐based single‐crystal superalloy MD2, recently developed by GE Power, with different crystallographic orientations. Specialty in situ scanning electron microscope (SEM) tests were also conducted to study the slip‐controlled initiation of short cracks under low‐cycle fatigue. In particular, the stress–strain response for both [001] and [111] orientations was used to calibrate a crystal plasticity model, which allowed us to simulate the activation of crystallographic slip systems and predict the initiation of short fatigue crack. Using the accumulated shear strain as a criterion, the simulations confirmed that the slip system with the maximum accumulated shear strain appeared to control the crack initiation. The location and direction of slip traces and short cracks, captured by the crystal plasticity finite‐element simulations, agreed with the in situ SEM observations. The modelling tool will be valuable for assessing the structural integrity of critical gas turbine blades.  相似文献   

10.
Cracks often initiate from the mechanical joints which are widely used in structural components. It has been reported that cracks in mechanical joints are under mixed‐mode condition and there is a critical angle at which mode I stress intensity factor becomes maximum. The crack propagates in an arbitrary direction and the prediction of fatigue crack growth path is needed to provide against crack propagation and examine safety. In this study, mixed‐mode fatigue crack growth tests are performed for horizontal and critical inclined cracks in mechanical joints. Fatigue crack growth paths are predicted using a weight function approach and maximum tangential stress criterion.  相似文献   

11.
Fatigue crack initiation and propagation behaviours were studied based on the dynamic response simulation by the three‐dimensional finite‐element analysis (FEA) and dynamic response experiments for tensile‐shear spot‐welded joints. The entire fatigue propagation behaviour from the surface elliptical cracks at the initiation stage to the through thickness cracks at the final stage was taken into consideration during the three‐dimensional FEA dynamic response simulations. The results of the simulations and experiments found that the fatigue cracks of spot‐welded joint from initial detectable crack sizes to crack propagation behaviour could be described by three stages. Approximately one‐half of the total fatigue life was taken in stage I, which includes micro‐crack nucleation and the small crack growth process; 20% of the total fatigue life in stage II, in which the existing surface crack propagates through the thickness of sheet and 30% of the total fatigue life in stage III, during which the through thickness crack propagates along the direction of plate width to the final failure. According to the relationship between the crack length and depth and the dynamic response frequency during the simulated fatigue damage process, the definition of fatigue crack initiation and propagation stages was proposed. The analysis will provide some information for the fatigue life prediction of the spot‐welded structures.  相似文献   

12.
Flaking type failure in rolling‐contact processes is usually attributed to fatigue‐induced subsurface shearing stress caused by the contact loading. Assuming such crack growth is due to mode II loading and that mode I growth is suppressed due to the compressive stress field arising from the contact stress, we developed a new testing apparatus for mode II fatigue crack growth. Although the apparatus is, as a former apparatus was, based on the principle that the static KI mode and the compressive stress parallel to the pre‐crack are superimposed on the mode II loading system, we employ direct loading in the new apparatus. Instead of the simple four‐point‐shear‐loading system used in the former apparatus, a new device for the application of a compressive stress parallel to the pre‐crack has been developed. Due to these alterations, mode II cyclic loading tests for hard steels have become possible for arbitrary stress ratios, including fully reversed loading (R=?1); which is the case of rolling‐contact fatigue. The test results obtained using the newly developed apparatus on specimens made from bearing steel SUJ2 and also a 0.75% carbon steel, are shown.  相似文献   

13.
14.
Straight cracks near a stiffening element, or curved cracks, in a pressurized shell can be subjected to out-of-plane tearing stresses in addition to normal tensile stresses due to the membrane stresses in the shell. To predict the rate of fatigue crack growth in such situations a theory and a crack growth rate correlation are needed. Such loadings are modelled as a superposition of plane stress tensile fracture (mode I) and Kirchhoff plate theory shearing fracture (mode 2). Finite element analyses using shell elements are used to compute the energy release rate and stress intensity factors associated with the loading. Three fatigue crack growth rate experiments were carried out on sheets of 2024-T3 aluminium alloy loaded in tension and torsion. The first set of experiments is constant amplitude fatigue crack growth tests. The second consists of experiments where crack closure is artificially eliminated to determine the rate of crack growth in the absence of crack face contact. The third is a set of constant stress intensity factor amplitude tests. The results all show that as the crack grows extensive crack face contact occurs, retarding crack growth. In the absence of crack face contact, however, the addition of out-of-plane shear loading increases the crack growth rate substantially.  相似文献   

15.
Biaxial in phase fatigue tests were carried out on thin walled tube specimens of alloy 800HT at ambient temperature. The loading modes included tension, torsion, and combined tension—torsion with a tensile/shear plastic strain range ratio Δ?p/Δγp = 31/2. The influence of effective strain amplitudes and biaxiality on the initial growth of fatigue cracks was investigated using the replica technique. The results indicated that the loading conditions strongly affected the growth rates of short cracks. In torsion the cracks grew significantly more slowly than under axial or biaxial loading. A mean tensile stress perpendicular to the shear crack promoted its growth and reduced the fatigue life. The growth of the cracks could be described by the ΔJ integral for axial and biaxial loading; the integration predicted the fatigue life under axial and biaxial loading correctly. However, significantly conservative lifetime predictions were obtained for pure torsional loading since ΔJ does not include crack closure and crack surface rubbing.

MST/3234  相似文献   

16.
In situ SEM observations (Zhang JZ. A shear band decohesion model for small fatigue crack growth in an ultra-fine grain aluminium alloy. Eng Fract Mech 2000;65:665–81; Zhang JZ, Meng ZX. Direct high resolution in-site SEM observations of very small fatigue crack growth in the ultra fine grain aluminium alloy IN 9052. Script Mater 2004;50:825–28; Halliday MD, Poole P, Bowen P. New perspective on slip band decohesion as unifying fracture event during fatigue crack growth in both small and long cracks. Mater Sci Technol 1999;15:382–90) have revealed that fatigue crack propagation in aluminium alloys is caused by the shear band decohesion around the crack tip. The formation and cracking of the shear band is mainly caused by the plasticity generated in the loading part of a load cycle. This shear band decohesion process has been observed to occur in a continuous way over the time period during the loading part of a cycle. Based on this observation, in this study, a new parameter has been introduced to describe fatigue crack propagation rate. This new parameter, da/dS, defines the fatigue crack propagation rate with the change of the applied stress at any moment of a stress cycle. The relationship between this new parameter and the conventional da/dN parameter which describes fatigue crack propagation rate per stress cycle is given.Using this new parameter, it is proven that two loading parameters are necessary in order to accurately describe fatigue crack propagation rate per stress cycle, da/dN. An analysis is performed and a general fatigue crack propagation model is developed. This model has the ability to describe the four general type of fatigue crack propagation behaviours summarised by Vasudevan and Sadananda (Vasudevan AK, Sadananda K. Fatigue crack growth in advanced materials. In: Fatigue 96, Proceedings of the sixth international conference on fatigue and fatigue threshold, vol. 1. Oxford: Pergamon Press; 1996. p. 473–8).  相似文献   

17.
This paper presents a numerical simulation of micro‐crack initiation that is based on Tanaka‐Mura micro‐crack nucleation model. Three improvements were added to this model. First, multiple slip bands where micro‐cracks may occur are used in each grain. Second improvement deals with micro‐crack coalescence by extending existing micro‐cracks along grain boundaries and connecting them into a macro‐crack. The third improvement handles segmented micro‐crack generation, where a micro‐crack is not nucleated in one step like in Tanaka‐Mura model, but is instead generated in multiple steps. High cycle fatigue testing was also performed and showed reasonably good correlation of proposed model to experimental results. Because numerical model was directed at simulating fatigue properties of thermally cut steel, edge properties of test specimens were additionally inspected in terms of surface roughness and micro‐structural properties.  相似文献   

18.
Fatigue crack growth in materials that display confined slip show crack path changes that are dependant on the loading history. In these materials certain variable amplitude loading patterns can produce strong slip bands ahead of the crack tip. One of these patterns of loadings involving bands of high R cycles followed by one or two underloads also produce distinct features or progression marks on the fracture surface that have been used to delimit small blocks of constant amplitude cycles. The same loading pattern also produces strong slip bands ahead of the fatigue crack both in the plane of the crack and out of plane. These slip bands affect the direction and possibly the rate of propagation of the fatigue crack. Thus these loading patterns make an ideal marker to look at small crack growth rates in the presence of slip bands.This paper reports on the crack growth rates for a series of fatigue cracks grown in AA7050-T7451 coupons, from near initiation to near failure. The aim of this work was to generate constant amplitude crack growth data for use in predictions that is more useful for predicting crack growth lives than that obtained from long crack constant amplitude tests. Three simple sequences which applied small bands of constant amplitude loading were used in the fatigue tests preceded by a loading sequence to produce a progression mark to delimit the bands. The fatigue cracks in the coupon initiated from etch pits on the surface of the coupons. The width of the bands of constant amplitude growth in these sequences were measured under a microscope. The growth in these sequences was found to be faster than for long cracks under constant amplitude loading.  相似文献   

19.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

20.
In this study, the specimens made of carbon steel S45 with an initial surface straight edge notch were subjected to combined cyclic axial‐torsion loading at room temperature. The fatigue life, surface crack extension direction and crack length were experimentally investigated. The effects of loading path, stress amplitude ratio and phase angle on the crack growth behaviour were also discussed. The results showed that, under the combination of cyclic axial and torsion loading, the tension stress amplitude had more effect on the initial crack growth path than the latter. The shear stress amplitude contributed mainly to the latter crack extension. The crack extension path was mainly determined by the stress amplitudes and the ratio of the normal stress to the shear stress, and almost independent of the mean stresses. The increase of the tension stress amplitude and shear stress amplitude would both accelerate the crack growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号