首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
采用络合法制备了锂离子电池的活性正极材料LiNi0.9Co0.1O2粉体,实验表明合成的LiNi0.9Co0.1O2粉体结晶良好,层状结构发育完善。电池充放电测试结果表明,其容量及循环性能与LiNi0.9Co0.1O2粉体的合成温度有关,其中900℃合成得到的LiNi0.9Co0.1O2材料具有最好的电化学性能,首次放电比容量高达120.5mAh/g,循环30次后可逆放电比容量仍高达118.8mAh/g,容量损失仅为1.4%。文中对容量退化的原因进行了分析。  相似文献   

2.
LiNi3/sCo2/8Mn3/8O2正极材料氟掺杂改性研究   总被引:2,自引:0,他引:2  
以共沉淀氢氧化物为前驱体制备了F^-掺杂化合物LiNi3/8CO2/8Mn3/8O2-yFy(y:0,0.05,0.10,0.20),采用XRD、XPS、SEM、循环伏安(CV)、充放电测试、DSC等表征了其结构与性能.结果表明,F^-掺杂置换部分O^2-生成固溶体,不改变样品中过渡金属离子的价态.F^-掺杂量y为0.05、0.10时,比容量不受影响,但在充放电过程中ch方向膨胀率由未掺杂样的2.06%分别下降至1.017%、1.018%,改善了其结构稳定性与循环寿命,30周后容量保持率分别达97.5%、96.2%;而y增至0.20时,离子混乱度升高,且颗粒间烧结过于严重,内阻增加,使容量与循环特性再度恶化.F^-掺杂还促进材料烧结,使该材料粒径通过粉碎分级控制成为可能,有利于该材料电极的制备.另外,F^-掺杂也使LiNi3/8CO2/8Mn3/8O2热稳定性得到一定程度改善.  相似文献   

3.
为了扩大锂离子电池正极材料LixMn2O4的工作电压范围,在保证良好循环性能的基础上提高材料的容量,本文对S-Co复合掺杂LiMn2O4的合成工艺和电化学性能进行了研究。溶胶-凝胶法合成的各试样均为纯的立方尖晶石相,且结晶状态良好。S-Co复合掺杂综合了S掺杂效应和Co掺杂效应,改善了LiMn2O4的电化学性能,在2.4~4.3V充放电压范围内,初始容量较高,达到170mAh/g,30次循环后容量不但没有衰减而且有一定增加。  相似文献   

4.
锂离子电池正极材料LiMn2O4的研究进展   总被引:6,自引:0,他引:6  
具有尖晶石相的LiMn2O4因价格低、无毒、无环境污染、制备简单、研究较成熟,因此有着很好的应用前景,被看作最有可能成为新一代商用锂离子二次电池正极材料.由于LiMn2O4电化学循环稳定性能不好,表现在可逆容量衰减较大,尤其在高温下(>55℃)使用衰减更严重,从而限制了它的商业化应用.经过近十几年的研究,人们对其衰减机理有了比较清晰的了解,提出了造成容量衰减的几种可能原因如Jahn-Teller畸变效应、Mn2+在电解质中的溶解、出现稳定性较差的四方相以及电解质的分解等.通过掺杂、表面包覆、制备工艺的改进,人们已能制得循环稳定性能较好的尖晶相材料.本文结合我们研究小组的最新研究成果对锂离子二次电池正极材料LiMn2O4的最新研究进展进行综述和评论.  相似文献   

5.
以氢氧化钠为沉淀剂,采用共沉淀法合成了Ni1/3Co1/3Mn1/3(OH)2前驱体,前驱体和LiOH·H2O充分混合高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对LiNi1/3Co1/3Mn1/3O2正极材料的结构、微观形貌及电化学性能进行了表征.XRD结果表明,所合成的LiNi1/3Co1/3Mn1/3O2物相单一无杂相,具有标准的α-NaFeO2型层状结构.SEM测试显示,颗粒粒度均一,粒径大约在0.5μm,粒径分布窄.以20mA/g电流密度放电,充放电电压在2.8~4.4 V之间,首次放电比容量达到181mAh/g,80次循环之后放电比容量仍然保持在172mAh/g;循环伏安测试显示,LiNi1/3Co1/3Mn1/3O2反应中主要是Ni2 /Ni4 、Co3 /Co4 2个电对在起作用,锰的价态保持不变,起到支撑结构的作用.  相似文献   

6.
采用碳酸盐共沉淀法、草酸盐共沉淀法、溶胶-凝胶法、高温固相法、氢氧化物共沉淀法(pH=10、11、12)制得LiNi1/3Co1/3Mn1/3O2正极材料,通过X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对样品的结构和性能进行了表征.结果表明,溶胶-凝胶法合成的样品层状结构较完整,阳离子混排程度低,粒径相对较小,颗粒分布均匀;该样品首次放电比容量较高为151 mAh·g-1,循环30次后容量保持率达到93.31%.  相似文献   

7.
以NaCO3为沉淀剂,NH3·H2O为缓冲溶液,将NiSO4、CoSO4和MnSO4混合溶液共沉淀制备(Ni1/3Co1/3Mn1/3)CO3前驱体,将其在400-900℃热处理5h制备得(Ni1/3Co1/3Mn1/3)Ox氧化物。EDTA络合滴定、BET、XRD及SEM研究表明,随着热处理温度的升高,(Ni1/3Co1/3Mn1/3)Ox中过渡金属含量及结晶度随着增加,而比表面积却减小。(Ni1/3Co1/3Mn1/3)Ox与LiOH混合后在850℃热处理24h制备出LiNi1/3Co1/3Mn1/3O2材料,其结构、形貌及电性能的测试结果表明,前驱体在600℃条件下热处理制备的正极材料电化学性能最佳,其首次放电比容量为189.7mAh·g^-1,不同倍率循环60周后,循环保持率为92.4%。  相似文献   

8.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的合成及性能   总被引:1,自引:0,他引:1  
采用氢氧化物共沉淀法合成了LiNi1/3Co1/3Mn1/3(OH)2前驱体,然后以Ni1/3Co1/3Mn1/3(OH)2和LiOH·H2O为原料,合成出了层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.通过XRD、SEM和电化学测试对LiNi1/3-Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12h所合成的样品粒度大小分布比较均匀,该材料以0.2C充放电,其首次放电容量为150mAh·g-1,循环30次后容量为137mAh·g-1.  相似文献   

9.
以Ni(NO3)2·6H2O,Co(NO3)2·6H2O,Mn(CH3COO)2·4H2O,LiOH·H2O为原料,采用NaOH-Na2CO3共沉淀的方法,在空气中合成了三元层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用XRD研究了所合成材料的结构.考查了不同烧结温度对材料电化学性能的影响.结果表明,所合成的材料具有典型的α-NaFeO2层状结构特征,900℃下合成的材料具有最优的循环性能,初始放电容量为169.4mAh/g,初次库仑效率为83.2%,且20次循环后,容量保持率达到96.3%.  相似文献   

10.
11.
采用氢氧化物共沉淀法合成LiNi0.8Co0.1Mn0.1O2正极材料,对产物进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及电化学性能分析,结果表明,LiNi0.8Co0.1Mn0.1O2在0.5C下的循环性能和倍率性能较差,100次循环后,Li+的嵌入/脱嵌的界面阻抗(Rf)和电荷转移阻抗(Rct)迅速增加,极化增大。为改善其电化学性能,以尿素为沉淀剂,采用均匀沉淀法,在LiNi0.8Co0.1Mn0.1O2表面包覆不同比例Al2O3包覆层,研究其对LiNi0.8-Co0.1Mn0.1O2电化学性能的影响。在所有的样品中,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有最优的六方晶型α-NaFeO2层状结构和最低的阳离子混排度。SEM和TEM图表明无定形透明多孔Al2O3包覆层均匀地包覆在LiNi0.8Co0.1Mn0.1O2表面。与纯相相比,1%Al2O3包覆LiNi0.8Co0.1Mn0.1O2具有较好的电化学性能,包括相对较高的首次放电容量189.56mAh·g-1、最高的首次库伦效率87.95%、较好的循环性能和倍率性能。循环伏安(CV)和电化学阻抗(EIS)结果表明,LiNi0.8Co0.1Mn0.1O2电化学性能得到提高是由于Al2O3包覆层可以抑制电解液与正极副反应的发生,从而减小循环过程中界面阻抗值和电荷转移阻抗值的增大。  相似文献   

12.
为改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的电化学性能,采用自制的磷酸铁纳米悬浮液,通过共沉淀法在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料表面包覆纳米磷酸铁。应用XRD,TG-DTA,TEM等手段表征制备的磷酸铁的结构,形貌和液相状态;通过XRD,SEM,EDS,TEM,ICP,恒流充放电、循环伏安、交流阻抗表征制备的包覆材料的结构、形貌及电化学性能。研究烧结温度和包覆量对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料电化学性能的影响。结果表明,热处理温度为400℃,2%(质量分数,下同)磷酸铁包覆能显著地改善LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的循环性能和倍率性能。循环伏安和交流阻抗结果显示,包覆磷酸铁后改善了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的可逆性和动力学性能。ICP测试结果表明,磷酸铁包覆层能够有效地降低电解液对正极材料的溶解与侵蚀,稳定其层状结构,从而提高正极材料的电化学性能。  相似文献   

13.
镍钴锰三元材料作为锂二次电池正极材料是目前国内外研究热点.综述了三元材料近几年国内外的研究状况,重点介绍了LiNi1/Co1/3Mn1/3O2的晶体结构和作为锂离子电池正极材料的电化学反应特征及热稳定性,总结了制备技术对其性能的影响,以及不同掺杂元素(Mg、Al、Ti、Cr、F等)对其的改性作用,并展望了正极材料LiNi1/3Co1/3Mn1/3O2的发展.  相似文献   

14.
以自制(Ni0.4Co0.2Mn0.4)(OH)2为前驱体,采用高温固相法合成了锂离子电池正极材料LiNi0.4Co0.2-Mn0.4O2,采用粉末X射线衍射(XRD)、扫描电镜(SEM)对材料结构和形貌进行了表征,表明所得材料外观为球形,具有典型的α-NaFeO2层状结构,循环伏安、恒电流充放电测试表明,800℃下合成的材料具有最优的电化学性能,首次放电比容量达161.8mAh/g。  相似文献   

15.
介绍了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的结构,综述了LiNi1/3Co1/3Mn1/3O2的正极材料制备与改性及其电化学性能研究,并对其应用前景进行了展望.  相似文献   

16.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

17.
通过固相自引发基团置换反应——流变相法制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,研究了不同烧结温度对材料的结构特性、微观形貌以及电化学性能的影响。结果表明,850℃煅烧20h的样品具有最佳的二维层状结构和阳离子有序度,产物颗粒呈球形,分布均匀,平均粒径约250nm。在2.8~4.3V区间,以80mA/g充放电,首次放电比容量为169mAh/g,30次循环后容量保持率为82.6%。将充电截止电压提高至4.4V,材料的前几次放电容量明显提高,以32mA/g充放电,10次循环后的放电比容量为174mAh/g,其后容量衰减加快,循环稳定性变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号