首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
The effect of electron beam irradiation, EPDM blending, and Azodicarbonamide (ACA) concentration on the foaming properties of LDPE sheet was investigated. The studied properties are foaming degree, cell densities, mechanical properties and thermal decomposition properties. The data showed that the increasing of foaming agent (ACA) concentration reduces the mechanical properties and increases the gel content. Also, electron beam irradiation has a clear effect on increasing the cell density, mechanical properties gel content and thermal properties of irradiated samples when compared with unirradiated samples. EPDM blending with LDPE at a concentration of 20% reduces the doses required to obtain the foaming degree (71.4%) from 50 kGy in LDPE to 5 kGy in LDPE/EPDM (80/20%). This effect may be attributed to enhancement of radiation cross-linking for LDPE by blending with the amorphous polymer (EPDM).  相似文献   

2.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
辐照交联聚烯烃/NR热塑性弹性体发泡材料辐照效应的研究   总被引:2,自引:0,他引:2  
王亚珍  张丽叶  段景宽  杜涛 《塑料》2007,36(2):68-72
研究了辐射交联聚烯烃/NR热塑性弹性体发泡材料的辐照效应以及辐照对于泡沫材料性能的影响。凝胶含量的测试表明:发泡体系的交联度随辐照剂量的增加而逐渐增加,但是过大的辐照剂量(>60kGy)不利于辐射交联聚烯烃/NR热塑性弹性体泡沫材料的发泡;随着辐照剂量的增大,材料的表观密度和压缩性能增加。SEM研究表明:随辐照剂量的增加,材料的微观泡孔尺寸变小。DSC研究表明,辐照剂量的提高有利于混合材料耐热性能的提高。傅立叶红外光谱(IR)的研究表明,辐照剂量影响发泡材料的微观结构,辐照剂量的增大使材料内部发生降解反应。  相似文献   

4.
The gel content of crosslinked perfluoroethylene-propylene copolymer was obtained by extraction with fluoro-chloro oil. It was then treated by the Charlesby-Pinner equation. The results obtained revealed that both the gelation dose and the ratio of fracture to crosslinking density decreased with increasing irradiation temperature.  相似文献   

5.
Polypropylene (PP) sheets obtained through a two-step process (masterbatch method) were crosslinked by electron beam irradiation. The crosslinked PP sheets were foamed in an oven under different processing conditions. The effects of foaming temperature and time on the mechanical properties and cell structure of PP foams were studied. With the foaming temperature increasing and foaming time lengthening, both the compression modulus and compression strength dropped. Scanning electron microscope (SEM) was employed to study the morphology and cell structure of different samples and the related morphology parameters were acquired. The results showed there was an optimum temperature and time that produced the maximum expansion ratio or the minimum foam density. As foaming temperature or time increased, the cell size increased and the cell density decreased regularly. Excessively high foaming temperature and overly long foaming time caused the coalescence and even the collapse of the cells.  相似文献   

6.
Low and high density polyethylenes (PE) were crosslinked by two methods, namely, chemically by use of different amounts of tert‐butyl cumyl peroxide (BCUP) and by irradiation with different doses of electron beam. A comparison between the effects of these two types of crosslinking on crystalline structure, crystallinity, crystallization, and melting behaviors of PE was made by wide angle X‐ray diffraction and DSC techniques. Analysis of the DSC first heating cycle revealed that the chemically induced crosslinking, which took place at melt state, hindered the crystallization process and decreased the degree of crystallinity, as well as the size of crystals. Although the radiation‐induced crosslinking, which took place at solid state, had no significant influence on crystalline region, rather, it only increased the melting temperature to some extent. However, during DSC cooling cycle, the crystallization temperature showed a prominent decrease with increasing irradiation dose. The wide angle X‐ray scattering analysis supported these findings. The crystallinity and crystallite size of chemically crosslinked PE decreased with increasing peroxide content, whereas the irradiation‐crosslinked PE did not show any change in these parameters. As compared with HDPE, LDPE was more prone to crosslinking (more gel content) owing to the presence of tertiary carbon atoms and branching as well as owing to its being more amorphous in nature. HDPE, with its higher crystalline content, showed relatively less tendency toward crosslinking especially by way of irradiation at solid state. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3264–3271, 2006  相似文献   

7.
Silicone rubber foam was prepared through crosslinking with electron beam irradiation and foaming by the decomposing of blowing agent azobisformamide (AC) in hot air. The crosslinking and foaming of silicone rubber was carried out separately, which was different from the conventional method of chemical crosslinking and foaming. After foaming, the silicone rubber foam was irradiated again to stabilize the foam structure and further improve its mechanical properties. The effects of irradiation dose before and after foaming, and the amount of blowing agents on the structure and properties of silicone rubber foam were studied. The experimental results show that with the increase of AC content, the average cell diameter of silicone rubber foam increases a little, the foam density decreases to a minimum value when AC content is 10 phr. With the increase of irradiation dose before foaming from 10 to 17.5 kGy, the cell nucleation density of silicone rubber foam increases, the average cell diameter decreases, and the foam density increases. With the increase of irradiation before foaming, the tensile strength, tensile modulus, and the elongation at break of the silicone rubber foam increase. Through irradiation crosslinking again after foaming, the foam density is decreased and the mechanical properties of silicone foam are further improved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Foamy low‐density polyethylene/plasticized starch (LDPE/PLST) blends at different compositions were produced in the presence of azodicarbonamide (ACA) compound as foaming agent. The LDPE/PLST blends before and after electron beam irradiation were investigated in terms of mechanical properties, bulk density, and structure morphology. Moreover, the biodegradability of these materials was evaluated by the soil burial test for 2 months, in which the buried sheets were also examined by scanning electron microscopy (SEM). The results showed that the increase of PLST content from 24 to 30% was accompanied by a decrease in the yield and break stresses of 10 and 20% for the unirradiated blends without the foaming agent, respectively. Further decrease in these mechanical parameters was observed after the foaming process. The bulk density, void fraction, cell size measurements as well as the examination by SEM illustrate clearly the cell growth of the foam structure. The soil burial test and SEM micrographs indicate the growth of microorganisms overall the blend sheets and that the blend was completely damaged after two months of burying. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The electrical resistivity of low‐density polyethylene/carbon black composites irradiated by 60Co γ‐rays was investigated as a function of temperature. The experimental results obtained by scanning electron microscopy, solvent extraction techniques, and pressure‐specific volume‐temperature analysis techniques showed that the positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects of the composites were influenced by the irradiation dose, network forming (gel), and soluble fractions (sol). The NTC effect was effectively eliminated when the radiation dose reached 400 kGy. The results showed that the elimination of the NTC effect was related to the difference in the thermal expansion of the gel and sol regions. The thermal expansion of the sol played an important role in both increasing the PTC intensity and decreasing the NTC intensity at 400 kGy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2742–2749, 2002  相似文献   

10.
Blends of low‐density polyethylene (LDPE) and poly[ethylene‐co‐(vinyl acetate)] (PEVA), crosslinked by electron‐beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB‐exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures, thus supporting the idea that the crosslinking density at a given irradiation dose depends on the amorphous portions of the polymers. Addition of trimethylolpropane trimethacrylate as a radiation sensitizer enhanced the gel content of the neat polyethylene significantly, while the addition of an antioxidant showed the reverse effect. A significant improvement in the tensile strength of the neat PEVA samples was obtained upon EB radiation up to 210 kGy. The irradiated LDPE/PEVA blends showed improved tensile strength and elongation at break when compared to LDPE. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Low-density polyethylene/ethylene–vinyl acetate copolymer (LDPE/EVA) blend was irradiated by γ-ray and then expanded by heat as a foamed material. The EVA content in the LDPE/EVA blend was benefited to form a gel. The gel fraction values of LDPE/EVA blend with 30% EVA content were higher than those of other blends in a same given dose; its gel fraction value was 1.7 times as those values of the LDPE without EVA. The gel fractions of the LDPE/EVA blend were increased with radiation dose in oxygen, in air, and in nitrogen, and the formation of gel was limited by oxygen. The oxidation products of the foam of the LDPE/EVA blend were observed in nitrogen, in oxygen by Fourier transform IR spectra. The LDPE/EVA blend system has no protection effect from oxidation in comparison with the LDPE system without EVA, which has less oxidation product than those without EVA in a same given gel fraction. The gel fraction of the LDPE/EVA blend around 25–35%, radiation dose 25±5 kGy, irradiated by γ-ray in air or in nitrogen, with higher expansion ratio (19), smaller cell diameter (0.175 mm), lower apparent density (0.042 g/cm3), higher tensile strength (0.40 MPa), and longer elongation at break (290–360%) foam of the LDPE/EVA blend were selected. These were optimum condition for application in this system. The relations among gel fraction of the LDPE/EVA blend, expansion ratio, apparent density, average cell diameter, and mechanical properties of the foam were discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Crosslinked sulfonated poly(ether ether ketone) (SPEEK) membranes were prepared through the electron beam (EB)‐irradiation crosslinking of SPEEK/1,4‐butanediol under various irradiation conditions and used as a proton exchange membrane (PEM) for fuel cell applications. The crosslinked membranes were characterized by gel fraction, a universal testing machine (UTM), dynamic mechanical analysis (DMA), and small‐angle X‐ray scattering (SAXS). The gel fraction of the crosslinked membranes was used to estimate the degree of crosslinking, and the gel fraction was found to be increased with an increase of the crosslinker content and EB‐absorbed dose. The UTM results indicate that a brittle EB‐crosslinked membrane becomes more flexible with an increase in the crosslinker content. The DMA results show that the EB‐crosslinked membranes have well‐developed ionic aggregation regions and the cluster Tg of membranes decrease with an increase in the 1,4‐butanediol crosslinker content. The SAXS results show that the Bragg and persistence distance of crosslinked membranes increase with an increase in the crosslinker content. The proton conductivities of the EB‐crosslinked membranes were more than 9 × 10?2 S/cm. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41760.  相似文献   

13.
A poly(L ‐lactic acid) (PLLA)/poly(D ‐lactic acid) (PDLA) stereocomplex was prepared from an equimolar mixture of commercial‐grade PLLA and PDLA by melt processing for the first time. Crosslinked samples were obtained by the radiation‐induced crosslinking of the poly(lactic acid) (PLA) stereocomplex mixed with triallyl isocyanurate (TAIC). The PLA stereocomplex and its crosslinked samples were characterized by their gel behavior, thermal and mechanical measurements, and enzymatic degradation. The crosslinking density of the crosslinked stereocomplex was described as the gel fraction, which increased with the TAIC content and radiation dose. The maximum crosslinking density was obtained in crosslinked samples of PLA/3% TAIC and PLA/5% TAIC irradiated at doses higher than 30 kGy. The stable crosslinking networks that formed in the irradiated PLA/TAIC substantially suppressed the segmental mobility for the crystallization of single crystals as well as stereocomplex crystals. The crosslinking network also significantly improved the mechanical properties and inhibited the enzymatic degradation of crosslinked PLA/3% TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
本文以BIH40作为发泡剂,使用注塑方法化学发泡成型制备了PP、LDPE发泡材料,探讨了发泡剂含量对PP和LDPE发泡制品的密度、拉伸强度、缺口冲击强度等力学性能的影响,并用扫描电子显微镜(SEM)观测了断面的泡孔形貌。实验结果表明,随着发泡剂含量的增加,发泡试样的拉伸强度、冲击强度、断裂伸长率和密度等与未发泡试样相比总体呈现下降趋势,LDPE的断裂伸长率在发泡剂含量为1.0%(重量百分比wt.)时较其他发泡组分有所增加,PP的冲击强度在发泡剂含量为0.5%(重量百分比wt.)时与其他发泡组分相比有所提高。综合实验测试结果显示,发泡剂含量在1.0%(重量百分比wt.)时所得到的发泡制品力学性能较好。  相似文献   

15.
木粉/LDPE复合材料的性能   总被引:10,自引:0,他引:10  
采用低密度聚乙烯(LDPE)与木粉制得了木粉/LDPE复合材料。研究了木粉用量、表面处理剂种类及用量以及发泡剂用量对复合材料性能的影响;并对化学发泡法减轻复合材料自重的方案做了初步探讨。结果表明:当木粉用量为30份,表面处理剂用量为木粉质量的1.0%时,复合材料的综合性能最佳;添加4份AC发泡剂后,复合材料的密度从0.83g/cm^3降到0.52g/cm^3,化学发泡法可有效减轻材料的自重。  相似文献   

16.
Different crosslinked high‐density polyethylene based cellular polymers have been produced by a free foaming process using a chemical blowing agent. The polymer matrix was crosslinked by electron beam irradiation using different doses ranging from 25 to 175 kGy. The main aim of this work is to study the effect of the different irradiation doses on the density, cellular structure, and foaming mechanisms. Results show that irradiation doses as high as 175 kGy have to be used to obtain cellular materials with a low relative density (0.06), cell sizes of around 50 μm, and cell densities of 1.6 × 107 cells cm?3. The strain hardening of the polymer matrix increases with the irradiation dose leading to an increase of the polymer resistance to be stretched, which helps to avoid undesirable cellular degeneration processes. Irradiation doses lower than 175 kGy are not able to stabilize the cellular structure leading to foams with relative densities higher than 0.1 and degenerated cellular structures. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46276.  相似文献   

17.
利用傅里叶变换红外光谱、差示扫描量热法、凝胶渗透色谱、核磁共振等,表征了QLT17等4种国内外交联低密度聚乙烯电力电缆绝缘料专用树脂。结果表明,QLT17的物理性能、加工性能与国内外同类树脂相当,质量稳定,杂质含量符合35 kV级电力电缆绝缘料要求,是一种性能优异的交联电力电缆绝缘料基础树脂。  相似文献   

18.
Linear low‐density polyethylene/soya powder blends were prepared by using an internal mixer at 150°C. The soya powder content ranged from 5 to 40 wt %. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was added as a compatibilizer. The blends were irradiated by electron beam (EB) at a constant dose of 30 kGy. The changes in gel fraction, tensile properties, morphological and thermal properties of the samples were investigated. The gel content increased after EB irradiation. However, the increment of gel content was hindered by increasing soya powder content. The tensile strength and Young's modulus of the blends were increased by EB whereas the elongation at break decreased. The tensile fracture surface also support the reduction of elongation at break by EB irradiation. Further analysis on the irradiated blends using Fourier transform infrared spectra indicated an increase of oxygenated product after undergoing EB irradiation. The differential scanning calorimetry result indicated that the melting temperature of the blends decreased after EB irradiation whereas the crystallinity increased. EB irradiation also enhanced the thermal stability of the blends as indicated by thermogravimetric analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Copolymer hydrogels were prepared by γ‐radiation copolymerization of maleic acid (MA) and 2‐hydroxyethylacrylate (HEA) or acrylamide (AAm). The effect of AAm/MA and HEA/MA composition and irradiation dose on the gel fraction yield in the prepared hydrogels was determined. It was found that as the content of MA increased, the gel fraction yield decreased. The increase of irradiation dose resulted in increasing the crosslinked network structure and consequently the gel percent. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, diffusion exponent, and diffusion coefficient of the hydrogels were calculated and evaluated, and it was found that water diffusion to the hydrogels generally was a non‐Fickian diffusion type. Characterization of the prepared hydrogels was studied and accordingly the possibility of its practical use in the treatment of waste dyes from aqueous solution was studied. The effect of treatment time, the pH of the feed solution, initial feed concentration, and temperature on the dye uptake was also investigated. The maximum uptake of the investigated dyes was higher for HEA/MA hydrogel than that for AAm/MA hydrogel. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3720–3731, 2006  相似文献   

20.
Do Ik Lee 《Polymer》2005,46(4):1287-1293
The effects of latex coalescence and interfacial crosslinking on the mechanical properties of latex films were extensively investigated by means of several series of model latexes with varying backbone polymer crosslinking density and interfacial crosslinking functional groups. It was found that the tensile strength of crosslinked model latex films increased with increasing gel content (i.e. crosslinking density) of latex backbone polymers up to about 75% and then decreased with further increase in gel, while their elongation at break steadily decreased with increasing gel content. These findings showed that latex particle coalescence was retarded above a gel content of about 75% so that the limited coalescence of latex particles containing gel contents higher than 75% prevented the tensile strength of crosslinked latex films from increasing by further crosslinking the latex backbone polymers. This was contrary to the theory of rubber elasticity that the tensile strength increases with increasing molecular weight and crosslinking density. This limitation was found to be overcome by the interfacial crosslinking among latex particles during film formation and curing. This paper will discuss the effects of both latex backbone polymer and interfacial crosslinking on latex film properties. It will also discuss the development of self-curable latex blends and structured latexes containing co-reactive groups: oxazoline and carboxylic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号