首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper studies the nano-structure fabrication on hardened steel by means of elliptical vibration cutting equipped with the ultra-precision amplitude control sculpturing method. Machining performance of the amplitude control sculpturing method is investigated, and the limitation in nano-scale machining is explored. In this proposed method, machinable part geometry is essentially restricted by vibration conditions and tool geometry. In addition, a considerable error between the amplitude command and the envelope of the tool trajectory is generated when the slope of the machining part geometry becomes steep. To overcome this error, a compensation method for the amplitude control command is proposed. In order to clarify the machining performance of the proposed technology, a series of analytical and experimental investigations are conducted. Furthermore, by applying the proposed command compensation method, nano-structures with a large ratio of structure height to wave length are machined accurately. The proposed sculpturing method is subsequently applied to the machining of nano-textured grooves and a three-dimensional grid surface, which verifies the feasibility of the proposed amplitude control sculpturing method.  相似文献   

2.
Elliptical vibration cutting of hardened die steel with coated carbide tools is examined in this research in order to achieve low-cost high-precision machining. Diamond coated tools are applied because of superior hardness of their polycrystalline diamond coating and its low manufacturing cost. TiN coated tools are also tested, since they are widely used for conventional machining of steels. Machinability of hardened die steel by the elliptical vibration cutting with coated carbide tools is discussed in three aspects in this study, i.e. transferability of cutting edge profile to cut surface, cutting force, and tool life. The transferability is evaluated quantitatively by calculating correlation coefficients of measured roughness profiles. It is clarified that the diamond coated tools have high transferability which leads to diffraction of light on the surface machined at micro-scale pick feed. Total cutting forces including ploughing components are measured at various feed rates, and then shearing components and ploughing components are separated utilizing linear regression. The measured results indicate, for example, that the all forces become considerably smaller only when elliptical vibration is applied to the TiN coated tool without cutting fluid. It is also found that this considerable reduction of forces interestingly corresponds to higher friction coefficient, which is identified from the ploughing components. Tool life tests are carried out by various machining methods, i.e. elliptical vibration/ordinary wet/dry cutting with diamond/TiN coated tools. The result shows, for example, that the flank wear is smallest in the wet elliptical vibration cutting with the diamond coated tool.  相似文献   

3.
Functional micro/nano structures are promising for enhancing the performance of CaF2-based devices. However, it is still a challenge to precisely manufacture CaF2 micro/nano structures due to their brittleness. In the present work, we demonstrated the machinability of ductile-mode diamond cutting of CaF2 and the ability to sculpture sophisticated micro/nano structures on CaF2 by applying elliptical vibration cutting. Firstly, the nanoindentation of CaF2 reveals the crystal orientation-dependent interaction between dislocation slip and crack propagation, thus obtaining the optimal crystal orientation for plasticity. Subsequently, the grooving tests were conducted along the crystal orientation of (111)[121]. With elliptical vibration cutting, the critical depth of cut from ductile-to-brittle transition is increased by 42 times as compared with ordinary cutting. Furthermore, considering the instantaneous uncut chip thickness in each vibration cycle, the influence of vibration amplitude on the ductile machinability of CaF2 is discussed in detail. Finally, based on these fundamental results, ultra-precision hexagonal microlenses were successfully sculptured on CaF2 by applying the amplitude-controlled sculpturing method in elliptical vibration cutting.  相似文献   

4.
Elliptical vibration cutting with single-crystalline diamond tools is applied to mirror surface machining of high-alloy steels such as cold work die steels and high-speed tool steels with a hardness of more than 60 HRC. Although practical mirror surface machining of hardened die steels such as Stavax (modified AISI 420) with a hardness of 53 HRC has been realized with the elliptical vibration cutting, lives of single-crystalline diamond tools are not sufficiently long in machining of some high-alloy steels, that may be caused by a large amount of alloy elements. In order to clarify the influence of the alloy elements on the diamond tool damage, the elliptical vibration cutting experiments are conducted on six kinds of high-alloy steels and four kinds of pure metals which are the same as the alloy elements. Mechanical properties of the alloy steels, i.e. difference in hardness between carbides and matrices, and the number of small carbides, are measured, and their influence on the micro-chippings are investigated. The chemical states of the alloy elements in high-alloy steels are analyzed using an X-ray diffraction (XRD) and an electron probe micro analyzer (EPMA), and their influence on the tool wear is discussed. Based on the investigation, a mirror surface machining of DC53, which has a high hardness of 62.2 HRC and the best machinability in the tested high-alloy steels, is demonstrated, and a mirror surface with a roughness of Rt 0.05 μm is obtained successfully.  相似文献   

5.
This paper proposes a new vibration cutting method named “multimode vibration cutting” for precision surface texturing. The proposed cutting method utilizes multiple unidirectional vibration modes mainly in the depth-of-cut direction. The vibrations at multiple frequencies induced to the tool tip can generate not only sinusoidal but also highly-flexible trajectories such as trapezoidal, triangular, and distorted triangular waves. Notably, only a sinusoidal vibration can be induced when a single resonant vibration is applied to the tool tip. Compared to conventional highly-flexible cutting methods for surface texturing, such as the utilization of fast tool servo and amplitude control of ultrasonic elliptical vibration cutting, the proposed method is highly-efficient because of its direct usage of high resonant frequencies. Compared to conventional highly-efficient cutting methods for surface texturing, such as linear and elliptical vibration cutting which mainly utilizes the vibration component in the depth-of-cut direction, the proposed method can generate highly-flexible trajectories for various micro texture profiles. In this study, an ultrasonic multimode vibration device is developed, and the mechanics of generating multimode vibrations are demonstrated. Turning experiments with several texture profiles are performed to confirm the validity of the proposed method for highly-efficient and highly-flexible micro/nano surface texturing.  相似文献   

6.
Elliptical vibration texturing is a newly arising method for the fast and cost-effective generation of near-subwavelength micro-structures on metal surfaces. This study proposes a fabrication method for structurally colored basso-relievo by combining the surface sculpturing and elliptical vibration texturing in one-step machining. Synergistic modulations of both nominal cutting speed and depth-of-cut (DOC) in elliptical vibration texturing are applied to provide concave-convex topography and structural coloration. A new rendering strategy for the face turning configuration with an equidistant spiral tool path has been presented to improve the image rendering efficiency over the raster scan tool path. In addition, different from the conventional elliptical vibration texturing, the nominal DOC dynamically changes pixel by pixel in the proposed new process. In order to identify the effects of DOC and elliptical vibration trajectories on the surface quality and fidelity of generated gratings, grooving experiments have been conducted on brass samples to further the understanding of nonlinear tool-workpiece interactions. Finally, both raster scan and face turning tests have been performed on an ultraprecision platform with optimized process parameters. Structurally colored basso-relievos with high quality have been successfully demonstrated using the proposed fabrication method.  相似文献   

7.
An ultrasonic elliptical vibration tool utilizing the coupled resonant vibration modes is the key component in the elliptical vibration cutting/texturing process, which has been successfully applied to ultra-precision machining and surface texturing. In this paper, an analytical approach is proposed to analyze the resonant frequency and mode shapes of the ultrasonic elliptical vibration tool. A new design of ultrasonic elliptical vibration tool based on a portal frame structure is presented and analyzed using the proposed model. The model assumes Euler-Bernoulli beams and utilizes the transfer matrix technique to reduce the order of the system to only six variables. The model can be utilized to provide a systematic approach for an optimal design and be extended to dynamic analysis of the tool for study of machine-tool dynamics. Finite element simulation results as well as experimental data based on the prototype design are presented to verify the model. An application of the proposed tool is also demonstrated in machining micro/nano-structured surfaces for structural coloration.  相似文献   

8.
回顾了超精密加工技术的发展,主要包括超精密加工设备的开发历程,以及超精密单点金刚石切削技术基础,并对微工程技术作一简要介绍;重点论述微结构自由曲面的微纳切削技术,包括单点金刚石车削(Single point diamond turning, SPDT),快刀伺服加工(Fast tool servo, FTS),金刚石微凿切(Diamond micro chiseling, DMC),光栅铣削等技术。指出微结构自由曲面测量领域面临的挑战和存在的问题,包括接触式测量和非接触式测量。通过几个典型微结构自由曲面的加工及测量的应用进行举例说明;最后介绍我国在超精密加工机床领域内的研制情况,展望了超精密切削技术未来发展趋势。  相似文献   

9.
This paper presents auto-tracking single point diamond cutting, which can conduct precision cutting on non-planar brittle material substrates without prior knowledge of their surface forms, by utilizing a force controlled fast tool servo (FTS). Differing from traditional force feedback control machining based on a cantilever mechanism such as an atomic force microscope (AFM) that suffers from low-rigidity and limited machining area, the force controlled FTS utilizes a highly-rigid piezoelectric-type force sensor integrated with a tool holder of the FTS system to provide sufficient stiffness and robustness for force-controlled cutting of brittle materials. It is also possible for the system to be integrated with machine tools to deal with the difficulties in the cutting of large area non-planar brittle materials, which requires not only high machining efficiency but also a high stiffness. Experimental setup is developed by integrating the force controlled FTS to a four-axis ultra-precision diamond turning machine. For the verification of the feasibility and effectiveness of the proposed cutting strategy and system, auto-tracking diamond cutting of micro-grooves is conducted on an inclined silicon substrate and a convex BK7 glass lens, while realizing constant depths of cuts under controlled thrust forces.  相似文献   

10.
Rapid tool wear in diamond machining of steel can cause catastrophic failures. Despite several approaches to reducing tool wear, diamond machining of steel for industrial applications remains limited. We investigated two solutions, namely plasma nitriding treatment for workpiece surface modification and elliptical vibration cutting for cutting process modification, to determine their effect on reducing tool wear in diamond machining of AISI 4140 die steel. Furthermore, a new approach by combining the two solutions was also explored. Experimental results showed that diamond tool wear could be reduced by several orders of magnitude and mirror-quality surface can be obtained by using either the plasma nitriding treatment or the elliptical vibration cutting. However, in contrast to our expectations, combining the two solutions did not yield further improvement of either the surface finish or the reduction of tool wear compared with that of elliptical vibration cutting alone due to microchipping. Care has been taken to investigate the mechanism responsible for microchipping, and it was found that microchipping is highly dependent on the crystal orientation of the diamond. A diamond tool with the (1 1 0) plane as the rake face and the (1 0 0) plane as the flank face was more resistant to damage, and the microchipping induced in the combined cutting process was almost completely suppressed.  相似文献   

11.
为了深入研究超声椭圆振动切削特性及其应用前景,通过建立超声椭圆振动切削模型,根据运动学方程,分析和推导出了切削占空比、振纹高度、振动频率、振幅之间的关系,揭示了超声椭圆振动车削表面粗糙度、加工精度、加工效率之间的相互关系。通过切削力和表面粗糙度试验对推导出来的结果进行了验证,试验结果表明有效减小切削力是超声椭圆振动切削加工应用的主要优势。  相似文献   

12.
Surface textures were made using laser on the rake or flank face of the cemented carbide (WC/Co) inserts. Molybdenum disulfide solid lubricants were filled into the textured grooves to form self-lubricating textured tools. Dry cutting tests on Ti-6Al-4V were carried out with these self-lubricating textured tools and conventional tool. The machining performance was assessed in terms of the cutting forces, cutting temperature, chip thickness ratio, friction coefficient at the tool–chip interface, and tool wear. Results show that the cutting forces and cutting temperature of the self-lubricating textured tools were reduced compared with that of the conventional tool. The application of the self-lubricating textured tool with elliptical grooves on its rake face can reduce the tool–chip friction coefficient and the chip thickness ratio. The tool life of the textured tools is improved compared with that of the conventional tool. The effectiveness of the self-lubricating textured tools in improving cutting performance is related to the cutting parameter.  相似文献   

13.
In this study, a novel dynamic contour error compensation technique has been proposed for the elliptical vibration cutting process achieved through the ultra-precision amplitude control. The influence of the contour error, triggered due to the inertial vibrations of the friction-less feed drive system, on the machining accuracy deterioration has been experimentally investigated. In order to reduce the contour error, a compensation method utilizing a real-time amplitude control in the elliptical vibration cutting process has been applied. In the proposed method, the dynamic motion error along the depth of cut direction is detected by utilizing the precise linear encoders installed on the feed drive system. The motion error in real-time is subsequently converted into cancelling amplitude command for the vibration control system of the ultrasonic vibrator, thus, guaranteeing that the envelope of the vibration amplitudes auto-tracks the dynamic reference position of the motion axis in the depth of cut direction. Due to this, a constant nominal depth of cut can be obtained even though the inertial vibrations disturb the feed drive control during machining. A series of experimental investigations have been conducted in order to analyze the machining performance by employing the proposed method. The maximum machining error is observed to significantly decrease from 0.6 to 0.04 μm by applying the proposed compensation method. Finally, the micro dimple array with a structural height from about 200 to 600 nm could be accurately fabricated with a maximum machining error of 36.8 nm, which verified the feasibility of the proposed amplitude control compensation method.  相似文献   

14.

During boring process, tool vibration is a major concern due to its overhanging length, which results in high cutting force, poor surface finish, and increase in tool wear. To suppress tool vibration and improve cutting performance, a novel technique in rheological fluid was designed and developed. In this work, a magnetorheological elastomer (MRE) was developed, and parameters, such as piston location, current intensity, and coil winding direction, were considered. Cutting experiments were conducted to obtain a set of parameters that can efficiently control vibration during boring of hardened AISI 4340 steel. Taguchi method was used to optimize the cutting condition, and findings show that the cutting tool embedded with the MRE reduced tool vibration and effectively increased cutting performance.

  相似文献   

15.
A nano positioning control is developed using the ultra-precision positioning apparatus such as actuator, sensor, guide, power transmission element with an appropriate control method. Using established procedures, a single plane X-Y stage with ultra-precision positioning is manufactured. A global stage for materialization with robust system is combined by using an AC servo motor with a ball screw and rolling guide. An ultra-precision positioning system is developed using a micro stage with an elastic hinge and piezo element. Global and micro servos for positioning with nanometer accuracy are controlled simultaneously using an incremental encoder and a laser interferometer to measure displacement. Using established procedures, an ultra-precision positioning system (100 mm stroke and ±10 nm positioning accuracy) with a single plane X-Y stage is fabricated. Its performance is evaluated through simulation using Matlab. After analyzing previous control algorithms and adapting modern control theory, a dual servo algorithm is developed for a minimum order observer to secure the stability and priority on the controller. The simulations and experiments on the ultra precision positioning and the stability of the ultra-precision positioning system with single plane X-Y stage and the priority of the control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE.  相似文献   

16.
There are two drawbacks in the performance of the resonant vibration cutting tools currently available. One is that the vibration frequency cannot be changed arbitrarily and the other is that the cutting force is low. It is impossible to turn mirror plates with many kinds of materials using these resonant vibration cutting tools because they cannot match the desirable turning speeds that correspond to the machined materials and the vibration frequency needs to be increased or decreased to obtain the desired surface roughness. Resonant vibration cutting tools do not allow the vibration frequency to be set arbitrarily. The small cutting force of these tools also causes some difficulties in diamond turning of metals other than soft metals such as aluminum and copper. In this research, we developed a vibration cutting tool that can generate two-dimensional vibration shapes without distortion by placing two piezoelectric actuators at right angles. This tool can machine the many kinds of mirror plates with different materials to the desired surface roughness. It is also possible to machine hard materials such as mold steels because the amplitudes of the vibrations do not decrease, even when large cutting forces are required. In this paper, we describe the design of the nonresonant vibration cutting tool, and show by the diamond turning of oxygen-free copper and aluminum that our nonresonant vibration cutting tool can machine desired shapes. Finally, it is verified by actual machining experiments that the proposed vibration cutting tool can machine hardened mold steels such as STAVAX with HRC 54.  相似文献   

17.
Cutting of a nanoscale workpiece is useful in nano testing and fabrication, and novel cutting methods with little gasification of cut nano samples and simple device structures are needed for practical applications. In this paper, an ultrasonic nanowire cutting strategy is demonstrated, in which the linear and elliptical vibration of the tip of a micro cutting tool and the adhesion force between a substrate and nanowire are employed to cut and fix the nanowire, respectively. With this strategy, cutting of individual silver nanowires with a diameter from 50 nm to 400 nm is implemented, in which the vibration velocity amplitude of the micro cutting tool’s root is from 18 to 220 mm/s, and the working frequency is about 96.9 kHz and 45.2 kHz, respectively. The dependency of the minimum cutting velocity and optimum cutting velocity range’s lower limit on the AgNW diameter is experimentally clarified. Also, the cutting principle is analyzed, which can well explain the incision morphology and cutting characteristics.  相似文献   

18.
采用整体式波前校正器替代自适应式波前校正器可以大大降低光学系统的成本。介绍了整体式波前校正器的金刚石切削原理。利用所研制的快速伺服刀架、计算机控制系统 ,在超精密车床上进行了切削试验。试验表明 ,用单点金刚石车削整体式波前校正器是可行的。  相似文献   

19.
Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.  相似文献   

20.
Precision machining of micro-channels and quadrangular pyramids was studied using elliptical vibration cutting (EVC). A single crystal diamond tool with the trapezoidal shape was specially developed, and the tool was attached to the orthogonally arranged dual piezoelectric actuators to make the tool traverse an elliptical path at a frequency of 18 kHz for EVC. When the conventional micro-shaping method was applied to create microgrooves and patterns on workpieces of different materials, it was observed that (1) relatively large shear deformation induced periodic waves and partial tearing on the surface of brass which has relatively small brittleness, (2) a significant amount of burrs were formed on ductile copper, and (3) fractures of microstructures were observed on brittle nickel. In contrast, the application of EVC greatly reduced cutting resistance which, in turn, inhibited formation of burr and fracture of the microstructure and prevented degradation of surface quality from shear deformation, collectively contributing to significantly improving form accuracy of micro-channels and pyramid patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号