首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the effect of differential support settlement on shear strength and behavior of continuous reinforced concrete (RC) deep beams. A total of twenty three-dimensional nonlinear finite element models were developed taking into account various constitutive laws for concrete material in compression (crushing) and tension (cracking), steel plasticity (i.e., yielding and strain hardening), bond-slip at the concrete and steel reinforcement interface as well as unique behavior of spring-like support elements. These models are first validated by comparing numerical predictions in terms of load-deflection response, crack propagation, reaction distribution, and failure mode against that of measured experimental data reported in literature. Once the developed models were successfully validated, a parametric study was designed and performed. This parametric study examined number of critical parameters such as ratio and spacing of the longitudinal and vertical reinforcement, compressive and tensile strength of concrete, as well as degree (stiffness) and location of support stiffness to induce varying levels of differential settlement. This study also aims at presenting a numerical approach using finite element simulation, supplemented with coherent assumptions, such that engineers, practitioners, and researchers can carry out simple, but yet effective and realistic analysis of RC structural members undergoing differential settlements due to variety of load actions.  相似文献   

2.
Shear Strength of Reinforced Concrete Members without Transverse Reinforcement A new theoretical model concerning the shear strength of reinforced concrete members without transverse reinforcement is presented, considering free‐bodies unilaterally bounded by a fictitious crack, inclined at π/4 to the tension chord and extending from the tension chord to the compression chord. It is assumed that the shear stress that can be transferred across a crack decreases linearly with the crack width and that the crack width at the level of the tension chord is proportional to the product of the tension chord strain at the crack and the chord distance. This results in a linear‐hyperbolic relationship between the shear strength and the (elastic) tension chord force at the crack, allowing to determine the governing crack location and other relevant quantities via equilibrium considerations. Due to potential strut or arch action for the transfer of loads applied in the vicinity of supports the crack location is somewhat restricted; it is assumed that the corresponding length is equal to twice the chord distance.  相似文献   

3.
钢纤维混凝土断裂行为及受拉本构关系对其工程应用起到至关重要作用,目前尚无本构模型揭示基体开裂与纤维拔出所产生的能量耗散的演化规律.文章通过开展钢纤维混凝土带缺口梁三点弯试验,利用声发射技术监测试件断裂过程中不同微观开裂模式所对应的能量耗散的演化规律,结合损伤力学原理建立钢纤维混凝土的单轴受拉弹塑性损伤本构模型.试验研究...  相似文献   

4.
建立一个简单、实用的新模型预测正交钢筋混凝土板的开裂行为。新的模型能解释箍筋对开裂行为的影响,同时也考虑了影响钢筋混凝土构件开裂行为的主要参数,包括混凝土抗拉强度、配筋率、钢筋直径、间距。采用平衡和协调方程,对钢筋混凝土单元进行研究,以求出钢筋和混凝土的平均应力。对本文试验研究结果以及涉及不同结构单元、荷载条件的已有研究成果进行一系列验证比较可知。所提出的裂缝间距模型能够预测不同荷载阶段的裂缝宽度值。在所研究案例中,试验值与模型预测值吻合较好。  相似文献   

5.
通过对7个钢管高强混凝土剪力墙的受拉性能试验和有限元分析,研究了墙中钢管的直径和数量、竖向分布筋配筋率、墙身混凝土强度等参数对其受拉承载力和刚度的影响。试验结果表明:墙体混凝土强度对受拉刚度影响较大,对受拉承载力影响甚微;受拉承载力主要由钢管混凝土和竖向分布钢筋承担,剪力墙受拉屈服后具有很长的强化阶段,变形和耗能能力强。基于试验结果,提出钢管高强混凝土剪力墙轴心受拉承载力的计算公式,其计算结果与试验结果吻合良好。  相似文献   

6.
型钢轻骨料混凝土梁弯曲性能的试验研究   总被引:1,自引:1,他引:0  
为研究型钢轻骨料混凝土梁的弯曲性能,进行了8根型钢轻骨料混凝土梁和2根型钢普通混凝土梁的抗弯性能试验。试验表明,型钢轻骨料混凝土梁受力过程经历弹性、弹塑性和破坏3个阶段;开裂荷载约为极限荷载的15%左右,试件开裂对试验梁的刚度没有明显的影响;试验梁的屈服是以型钢的受拉翼缘屈服为标志;试件屈服前,平均应变的平截面假定成立;屈服后,平截面假定不再成立,此后型钢与混凝土间的滑移对试验梁的变形及裂缝宽度的影响加大;试验梁达到极限承载力以后,表现出良好的延性。可见型钢轻骨料混凝土梁的弯曲性能是优越的。  相似文献   

7.
Abstract: Allowing for the tension stiffening effects resulting from the bond between steel reinforcement and surrounding concrete leads to effective deformation analysis of reinforced concrete (RC) members when using a nonlinear finite element analysis modeled on the smeared crack concept. Nowadays, externally bonded fiber reinforced polymer (FRP) composites are widely used for strengthening existing RC structures. However, it remains unclear to what extent the tension stiffening of postcracking concrete is quantitatively influenced by the addition of FRP composites, as a result of the bond between the FRP and the concrete substrate. This article presents a discrete model, which is based on rigid body spring networks (RBSN), for investigating the tension stiffening behavior of concrete in FRP‐strengthened RC tensile members. A two‐parameter fracture energy‐based model was deployed to represent the bond‐slip behavior of the FRP‐to‐concrete interface. The reliability of the RBSN model was verified through comparisons with previous test results. Further parametric analysis indicates that the tension stiffening of concrete is hardly influenced by the addition of FRP composites before the yield of steel reinforcement has occurred although concrete crack patterns and crack widths may be influenced by the bond‐slip behavior of the FRP‐to‐concrete interface.  相似文献   

8.
张永兴   《建筑结构学报》2013,34(12):121-127
依据应变硬化水泥基复合材料单向拉伸试验结果,提出评价该类材料单向拉伸特性的考虑断裂能的三折线模型。提出采用虚拟材料的零跨拉伸模型反映应变硬化水泥基复合材料加固层紧邻既有钢筋混凝土构件裂缝处的细小裂缝扩展过程,得到应变硬化水泥基复合材料加固既有钢筋混凝土构件时加固层数值单元的单向拉伸平均应力-应变曲线,该曲线考虑紧邻混凝土梁某裂缝的加固层细小裂缝(置于同一单元内)对单元单向拉伸应力-应变曲线的影响,继而以该平均应力 应变曲线作为加固层单元的应变硬化水泥基复合材料单向拉伸本构关系。该方法可避免不同单元尺寸对数值分析结果的影响,因此,对该类材料加固既有钢筋混凝土构件可以采用较大尺寸的单元划分进行数值分析。  相似文献   

9.
文章完成截面纵筋率为17%、25%的钢筋混凝土剪力墙轴拉试验。试验结果表明:剪力墙轴拉刚度在混凝土开裂前由钢筋和混凝土共同提供,并随轴拉力的增加逐渐下降;在混凝土开裂时轴拉刚度迅速下降;在开裂后混凝土退出工作,轴拉刚度逐渐趋于截面纵筋刚度。基于试验结果,完成剪力墙的轴拉受力特性和刚度变化特征的理论分析,提出能够描述钢筋混凝土剪力墙轴拉刚度变化特征的二阶段计算方法:在混凝土开裂前及开裂时根据混凝土本构模型获得的受拉弹性模量进行计算,在开裂后则引入纵向受拉钢筋应变不均匀系数进行计算。由此得到的理论值与试验结果更为吻合,更能反映剪力墙在轴拉阶段的受力和刚度变化特征。  相似文献   

10.
The concept of directional nonlocality is defined to describe the inherent characteristics of concrete tensile cracks affecting the compressive behavior as well as the tensile behavior of concrete. In the cracked concrete, the crack damage in one direction is influenced by damages from other directions. In the present study, a material model was developed to describe the directional nonlocal effect by tension cracks in concrete planar members. For nonlinear numerical analysis of concrete, the proposed directionality parameter was employed in the plasticity model with multiple failure criteria, and an identical tension crack parameter was used for both the tensile behavior and compressive behavior of the concrete. In the proposed plasticity model, tensile and compressive micro failure surfaces defined in the prescribed multiple fixed orientations were used to describe the directional nonlocality in the micro-structure of concrete, and the overall failure surface of the concrete was calculated by averaging the multi-oriented micro-surfaces. The proposed plasticity model was used for nonlinear finite element analysis of reinforced concrete shear panels, and the analysis results were compared with test results.  相似文献   

11.
A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.  相似文献   

12.
扰动应力场模型(DSFM)由于考虑了裂缝间的剪切滑移效应,融合了转动裂缝模型和固定裂缝模型的思想,可以更真实地模拟钢筋混凝土构件的受剪性能。通过大型通用有限元软件ABAQUS的二次开发接口,开发了基于DSFM模型思想的用户子程序UMAT,重点介绍将剪切滑移应变从总应变中分离出来的算法,并给出能够适应UMAT开发要求的编程方法和流程。利用所开发的UMAT子程序和ABAQUS内置的塑性损伤(CDP)模型对多伦多大学完成的多块钢筋混凝土平板试验进行分析。结果表明,所开发的子程序能够准确反应不同配筋形式的钢筋混凝土单元在不同受力状态下的响应,而ABAQUS内置的CDP模型由于无法反应钢筋混凝土单元斜裂缝出现后的剪应力强化效应,不能用于钢筋混凝土的受剪性能分析。  相似文献   

13.
为解释无腹筋钢筋混凝土受弯构件的受剪破坏机理,并反映尺寸效应对无腹筋受弯构件受剪强度的影响,在修正压力场理论基础上,对钢筋混凝土构件受剪破坏做了进一步研究,提出沿受弯构件斜裂缝表面平均剪应力的计算公式,并考虑混凝土构件的尺寸效应提出抗剪强度简化计算公式。与国内外无腹筋梁的512个试验结果比较表明,采用提出的斜裂缝表面平均剪应力公式按修正压力场理论计算的受剪承载力及按文中简化公式计算的受剪承载力与试验结果比值的变异性很小,可用于无腹筋钢筋混凝土梁的受剪分析和设计。  相似文献   

14.
The shear capacity of reinforced concrete members can be successfully increased using near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement. Tests conducted thus far have shown that failure is often controlled by diagonal tension associated to debonding between the NSM reinforcement and the concrete substrate. In absence of steel stirrups and/or when the spacing of the NSM reinforcement is large, debonding involves separately each of the bars crossed by the critical shear crack. In order for shear strengthening of beams with NSM reinforcement to be safely designed, an analytical model able to encompass the failure mode mentioned above must be developed. This paper presents two possible approaches, a simplified and a more sophisticated one, to predict the FRP contribution to the shear capacity. In the first approach, suitable for immediate design use, an ideally plastic bond–slip behavior of the NSM reinforcement is assumed, which implies a complete redistribution of the bond stresses along the reinforcement at ultimate. The second approach, implemented numerically, accounts for detailed bond–slip modeling of the NSM reinforcement, considering different types of local bond–slip laws calibrated during previous experimental investigations. It also takes advantage of an approach developed by previous researchers to evaluate the interaction between the contributions of steel stirrups and FRP reinforcement to the shear capacity. The paper illustrates the two models and compares their predictions, with the ultimate goal to evaluate whether the first simple model can be used expecting the same safety in predictions of the second model.  相似文献   

15.
In the evaluation of flexural strength of reinforced concrete (RC) columns, the elastic–perfectly plastic constitutive model is generally used for steel reinforcement, which ignores the strain hardening effect. While some engineers believe that the flexural strength so obtained is on the safe side, others are concerned that underestimation of member strength could lead to inaccurate prediction of overall structural behaviour especially under extreme events. In any case, better understanding of the possible over‐strength and its effects on flexural ductility and failure mechanism is necessary. In this paper, the effects of strain hardening of reinforcement on the flexural strength and ductility of reinforced normal‐ and high‐strength concrete columns are studied based on rigorous full‐range moment–curvature analysis. The study has identified if and how various parameters affect the strain hardening effect, which include axial load ratio, concrete strength, confining stress, reinforcement ratio and the tensile‐strength‐to‐yield‐stress ratio of steel. The effects of strain hardening can be quite significant for RC columns under relatively low axial load and relatively high confining stress. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Tension stiffening is most often included in models of reinforced concrete by modifying the constitutive laws of the tensile concrete. In reality, tension stiffening is caused by the bond stress that develops at the steel–concrete interface between the primary cracks. In this paper, a modified CEB–FIP bond model is incorporated into a non-linear finite element program to accurately model tension stiffening at the serviceability limit states. The bond–slip relationship at any point along the reinforcement bar is modified to account for the local damage of the surrounding concrete, as well as the level of steel stress. A non-local analysis is undertaken to adjust the constitutive law of the bond interface element at each load step. The proposed model is shown to accurately predict the crack spacing, stresses and deformation in axially loaded tension members at typical in-service load levels.  相似文献   

17.
高丹盈  雷杰  樊华 《建筑结构学报》2012,33(12):106-111
为研究钢纤维高强混凝土四桩承台的受力性能,基于17个钢纤维高强混凝土承台试件的受弯试验,分析了不同钢纤维体积率、承台有效厚度、钢筋配筋率、混凝土强度承台的裂缝开展和破坏形态、荷载 挠度曲线、钢筋和混凝土应变特征以及承台破坏机理。结果表明:底部配筋率为0.16%~0.52%的钢纤维高强混凝土四桩承台呈现受弯破坏形态,弯曲拉应力由钢筋和钢纤维混凝土共同承担;随着承台有效厚度和钢纤维体积率的增加,承台受弯承载力显著提高。依据研究结果提出了钢纤维高强混凝土四桩承台受弯破坏计算模型,建立了钢纤维高强混凝土四桩承台受弯承载力计算式,为完善CECS 38:2004《纤维混凝土结构技术规程》提供参考。  相似文献   

18.
近年来,随着结构工程的快速发展,对结构在罕遇地震和风载作用下的精准数值模拟与性能化设计提出了更高需求.结构工程中的混凝土属于准脆性材料,试验表明混凝土具有显著的受压软化、受拉软化、剪切软化和捏拢效应等特性.针对上述特性,概述了结构工程数值模拟中常用的6种混凝土数值模型,包括非线性弹性模型、脆性裂缝模型、弹塑性裂缝模型、...  相似文献   

19.
为研究石墨烯/环氧涂层钢筋应用于混凝土构件时的性能,对3根石墨烯/环氧涂层钢筋混凝土梁和1根普通钢筋混凝土梁进行正截面受弯性能试验,对比分析各试验梁的承载力、挠度、裂缝和破坏形态,并将试验值与规范公式的计算值进行对比.结果 表明:石墨烯/环氧涂层钢筋混凝土梁的受弯性能与普通钢筋混凝土梁基本相同,环氧涂层中石墨烯的掺量对...  相似文献   

20.
为方便设备管线通过,采用腹部开孔梁可有效降低楼层高度,但开孔会削弱梁的整体刚度,导致孔洞附近的应力及内力重分布十分复杂。为研究腹部矩形开孔的钢筋混凝土伸臂梁的受力性能,以正反弯矩比、孔洞位置、剪跨比及孔侧斜筋作为主要变量,对12根钢筋混凝土开孔伸臂梁和1根钢筋混凝土实腹伸臂梁试件进行了两点加载下的受剪性能试验。研究了各种参数对开孔伸臂梁的裂缝开展及破坏形态、应变分布、变形和受剪承载力等受力性能的影响。试验结果表明:正反弯矩比和孔心剪跨比改变了伸臂梁在孔洞附近的受力状态,导致破坏时孔侧呈现出不同的裂缝形态。配置孔侧斜筋后,孔侧混凝土和箍筋更好地发挥协同抗剪作用,试件的受剪承载力显著提高,裂缝开展和变形均得到有效的控制。利用混凝土开孔简支梁发生孔侧剪压破坏的受剪承载力公式对开孔伸臂梁的受剪承载力进行计算,并和试验数据进行对比可知,按开孔简支梁的算式对开孔伸臂梁的受剪承载力进行计算,计算结果与试验结果的平均比值为0.96,方差为0.07,结果偏于安全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号