首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于“保险丝”和“损伤控制”的抗震设计理念,提出在桥梁双柱式排架墩中通过设置屈曲约束支撑(BRB)以提高其横桥向抗震性能的构想。首先从获得“抗震能力”的角度对设置BRB桥梁排架墩的抗震设计参数进行系统性分析,推导出与剪跨比和墩柱间距与直径(边长)比相关的BRB核心段最大和最小长度取值范围|再从求解“地震需求”角度建立了设置保险丝的(SDOF)主结构体系弹塑性反应谱基本方程,分析该体系的非线性地震反应一般规律|然后,基于体系的“抗震能力”和“地震需求”,发展了设置BRB的桥梁排架墩基于位移的抗震设计方法,并结合一个具体桥梁排架墩实例说明建议设计方法的可行性。  相似文献   

2.
One of the important measures of post-earthquake functionality of bridges after a major earthquake is residual displacement. In many recent major earthquakes, large residual displacements resulted in demolition of bridge piers due to the loss of functionality. Replacing the conventional longitudinal steel reinforcement in the plastic hinge regions of bridge piers with super-elastic shape memory alloy (SMA) could significantly reduce residual deformations. In this study, numerical investigations on the performance of SMA-reinforced concrete (RC) bridge bents to monotonic and seismic loadings are presented. Incremental dynamic analyses are conducted to compare the response of SMA RC bents with steel RC bents considering the peak and the residual deformations after seismic events. Numerical study on multiple prototype bridge bents with single and multiple piers reinforced with super-elastic SMA or conventional steel bars in plastic hinge regions is conducted. Effects of replacement of the steel rebar by SMA rebar on the performance of the bridge bents are studied. This paper presents results of the parametrical analyses on the effects of various design and geometric parameters, such as the number and geometry of piers and reinforcement ratio of the RC SMA bridge bents on its performance.  相似文献   

3.
Seismic fragility of reinforced concrete (RC) bridges is defined as the conditional probability that the seismic demand exceeds the corresponding capacity, specified for a certain performance level, for given seismic intensity measures. However, the structural properties of RC bridges change over time due to the onset of corrosion in the reinforcing steel. Therefore, seismic fragility of RC bridges changes during a bridge lifetime. This paper proposes a method to estimate the seismic fragility of corroding RC bridges. Structural capacities are defined using probabilistic models for deformation and shear capacities of RC columns. Probabilistic models are also used to estimate the corresponding demands for given seismic intensity measures. The capacity and demand models are then combined with probabilistic models for chloride-induced corrosion and time-dependent corrosion rate to model the dependency on time of the seismic fragility of RC bridges. In particular, the loss of reinforcing steel is modelled as a function of the thickness of the cover concrete for each reinforcing bar in the RC columns. The stiffness degradation in the cover concrete over time due to corrosion-induced cracking is also considered in the fragility estimates. Seismic fragility estimates are then formulated at the column, bent, and bridge levels. The fragility formulations properly incorporate the uncertainties in the capacity and demand models, and the inexactness (or model error) in modelling the material deterioration. The proposed method accounts for the variation of structural capacity and seismic demand over time due to the effects of corrosion in the reinforcing steel. As an application, seismic fragility estimates are developed for a corroding RC bridge with 11 two-column bents over a 100-year period.  相似文献   

4.
钢筋混凝土桥墩基于位移的抗震设计方法   总被引:11,自引:0,他引:11  
通过改进能力谱法,给出了一个可以实现“小震不坏、中震可修和大震不倒”多级性能目标的钢筋混凝土桥墩直接基于位移的抗震设计方法。首先以钢筋和混凝土的应变幅值建立了钢筋混凝土桥墩不同破损极限状态的量化准则,并基于曲率延性系数和位移延性系数关系转化为墩顶位移的表述形式。再以屈服位移和位移延性系数作为设计参考变量,采用屈服谱加速度和屈服位移(Ay-Dy)格式的地震需求谱求解系统在不同风险水平地震作用下的反应。最后以能力设计原理保证桥墩截面的抗剪强度需求。通过一个具体设计算例说明了建议方法的可行性。  相似文献   

5.
Closed-form seismic fragility estimates are developed for reinforced concrete (RC) columns in bridges with two-column bents. Deformation and shear modes of failure are considered. The closed-form solutions incorporate the important uncertainties associated with both structural properties and ground motion characteristics. Probabilistic capacity and demand models for RC columns in two-column bents are used for the fragility formulation. Sensitivity and importance measures are computed for the parameters and random variables, respectively, included in the limit state function expressed in terms of probabilistic capacity and demand models. The sensitivity measures suggest that the vulnerability of RC columns in two-column bents can be effectively improved by using high strength reinforcement for the column confinement, reducing the spacing between confining reinforcement, and limiting the use of high strength concrete. The importance measures suggest that the random errors in the probabilistic capacity and demand models represent the principal sources of uncertainty. Thus, an approximate closed-form solution for a fragility estimation of a RC column can be developed by considering only the uncertainty in the random errors of the capacity and demand models. Only a marginal difference exists between the closed-form fragility estimates and the corresponding predictive fragility estimates that include all uncertainties.  相似文献   

6.
This paper proposes a novel probabilistic methodology for estimating the life-cycle reliability of existing reinforced concrete (RC) bridges under multiple hazards. The life-cycle reliability of an RC bridge pier under seismic and airborne chloride hazards is compared to that of a bridge girder under traffic and airborne chloride hazards. When conducting a life-cycle reliability assessment of existing RC bridges, observational data from inspections can provide the corrosion level in reinforcement steel. Random variables related with the prediction of time-variant steel weight loss can be updated based on the inspection results using Sequential Monte Carlo Simulation (SMCS). This paper presents a novel procedure for identifying the hazards that most threaten the structural safety of existing RC bridges, as well as the structural components with the lowest reliability when these bridges are exposed to multiple hazards. The proposed approach, using inspection results associated with steel weight loss, provides a rational reliability assessment framework that allows comparison between the life-cycle reliabilities of bridge components under multiple hazards, helping the prioritisation of maintenance actions. The effect of the number of inspection locations on the updated reliability is considered by incorporating the spatial steel corrosion distribution. An illustrative example is provided of applying the proposed life-cyle reliability assessment to a hypothetical RC bridge under multiple hazards.  相似文献   

7.
The ductile end diaphragm concept developed for regular (i.e., straight) slab-on-girder or deck-truss steel bridge superstructures is expanded to make it applicable to bidirectional earthquake excitation. Buckling restrained braces (BRBs) are used as the ductile fuses. Two retrofit schemes (Retrofit Scheme-1 and Retrofit Scheme-2) are investigated to seek the best geometrical layout to maximize the dissipated hysteretic energy of the ductile diaphragms with BRB end diaphragms. Closed form solutions are presented for practical design purposes. Behavioral characteristics (strength, stiffness, and drift) of the proposed retrofit schemes for end diaphragms are quantified with an emphasis on hysteretic energy dissipation. Results from selected numerical examples show that the generic bridge geometry, bidirectional loading, and the loading ratio (or the assumed combination rule), have a pronounced effect on the end diaphragm’s inelastic behavior. Volumetric hysteretic energy dissipation is used to compare the effectiveness of the proposed retrofit schemes under several loading cases. These indicate that, in most cases, Retrofit Scheme-1 is superior to Retrofit Scheme-2 and may exhibit better seismic response.  相似文献   

8.
高墩桥在中国西部多山谷地区得到广泛的应用,然而对其抗震性能的研究并不充分,我国尚没有确立相关的分析设计方法与规范,因此对其进行非线性地震响应分析乃至倒塌分析以便研究其地震破坏模式是十分有意义的。本文以贵州省高速公路上跨越山谷的某大桥为例进行了研究。该桥是一座处于典型西部地区山地、桥体为双向分离的曲线T型刚构高墩混凝土桥。本文在对全桥进行动力特性分析的基础上,采用有限元软件LS-DYNA进行了全桥非线性时程响应分析,考虑桥体的碰撞,得到塑性铰形成与发展状况以及破坏模式,实现了对全桥倒塌过程的仿真。本研究结果对类似桥梁的抗震设计提供了有益的参考。  相似文献   

9.
The deteriorating state of highway bridges is traditionally ignored in estimating the seismic reliability of transportation networks. In this study, the present day seismic reliability of ageing bridges in highway networks is evaluated through a time-dependent seismic fragility analysis of typical bridge classes. An efficient algorithm based on finite-state Markov Chain Monte Carlo simulations is also presented to assess the reliability of large ageing highway bridge networks without the need to simplify the network topology. The criticality of ageing bridges is then assessed through different proposed ranking strategies to arrive at an optimised seismic retrofit prioritisation. A case study on an existing bridge network with 515 bridges in the state of South Carolina, USA reveals striking differences between results of the proposed ranking strategies and those from state-of-the-practice methods. Such differences emphasise the significance of accounting for network-level importance in seismic retrofit programs of ageing transportation networks.  相似文献   

10.

Elastomeric rubber bearings with side blocks have been extensively used as a seismic response-control device in steel girder bridges in Japan. In real scenarios, the behavior of the girder bridges with elastomeric bearings are usually complex because of the complex mechanism by which the seismically induced inertia forces at concrete deck transmits to the girder bearings. Therefore, it is important to carry out seismic response analysis of a whole bridge system considering the interaction between different structural components in order to check the performance of the side blocks during an event of severe earthquakes. The objectives of the present study are to develop a detailed three-dimensional finite element (FE) model of an elevated girder bridge system and to propose a design rupture strength for the side blocks. The FE-model is constructed based on an existing plate girder bridge considering the effect of concrete slab, girders, stiffeners, rubber bearing, pier and the damage control by the side blocks. A sequence of seismic response analysis is then performed using four different rupture forces of the side blocks by considering the Level-2 design earthquake, the 1995 Kobe earthquake and the 2016 Kumamoto earthquake. The analytical investigation reveals that the side blocks should be designed to withstand a horizontal force of at least 1200 kN in order to prevent the rupture of the side blocks and to mitigate damage of bridge piers. Moreover, the damage to the critical parts of bridge superstructure can be mitigated by strengthening the side blocks. Based on the analysis results, a retrofit plan to strengthen the side blocks of existing girder bridges is proposed.

  相似文献   

11.
A seismic design strategy that relies on ductile end-diaphragms inserted in the steel superstructure can be, in some instances, an effective alternative to energy dissipation in the substructure. This could be the case, for example, when stiff wall-piers that can difficultly be detailed to have a stable ductile response are used as substructures. Such a ductile diaphragms concept was originally developed for the seismic retrofit of steel slab-on-girder and deck-truss bridges. For application in new bridges, the proposed retrofit methodologies were revised and convert into design procedures. This paper provides an overview of these design procedures developed as part of an NCHRP project.  相似文献   

12.
为改善中小跨径桥梁的抗震性能,总结了青海玛多地震、汶川地震等震害,阐述了合理的抗震概念设计以及合适的构造措施,基于“多道设防,分级耗能”“一可三易(损伤部位及损伤程度可控、损伤部位或构件易检、损伤部位或构件易修、损坏部位或构件易换)”的桥梁抗震理念,提出将支座作为“保险丝式单元”的桥梁抗震概念设计。针对中小跨径简支梁桥易发生落梁震害,提出了适当增加盖梁宽度和横向设置双层挡块的抗震构造设计,建议在进行桥梁抗震设计和抗震评价时,统一抗震构造措施,不应再按照烈度(或基本地震动参数)划分桥梁抗震构造设计。从结构基本周期和频谱成分的角度,总结并分析了玛多地震中结构相似的相邻桥梁发生不同震害的原因。研究成果可为同类工程的抗震设计与评价提供参考。  相似文献   

13.
讨论了钢筋混凝土桥墩在强震动作用下的剪切机理 ,提出强震动作用下混凝土桥墩塑性铰区截面残余抗剪强度的概念。在评述了国外主要地震国家现行的规范公式的基础上 ,提出对国内现行规范关于强震动作用下钢筋混凝土桥墩抗剪验算的改进建议。  相似文献   

14.
For existing reinforced concrete (RC) bridges, the structural performance is highly dependent on the changing properties of concrete and reinforcing steel due to neutralisation-induced corrosion. As neutralisation progresses, the corrosion could become serious enough to deteriorate not only the serviceability, but also the maintainability, of the structural performance. To study the influence of neutralisation on the existing RC bridges, the inspected data and test results collected from 21 bridges in Taiwan were examined to obtain the essential parameters through regression analyses. The regressive parameters related to service time can be employed in evaluating the variation of material and sectional properties in both reinforcements and concrete, and, accordingly, the change of structural performance from time to time could be obtained quantitatively via structural analysis. As a consequence, the performance degradation curve of an existing RC bridge can be predicted and, if necessary, the appropriate timing for repair or retrofit could be suggested. The results obtained could facilitate the minimisation of life-cycle cost for the neutralised RC bridges and enhance the functionality of a bridge management system (BMS).  相似文献   

15.
In the seismic design of reinforced concrete (RC) bridge structures, there should be no brittle failures, such as shear failures, in the components, and a plastic hinge should be formed at the bottom of the bridge pier. These are important concepts in capacity design to guarantee the safety of bridges subjected to severe earthquakes. These concepts can maximise post-event operability and minimise the cost of repairing bridges after a severe earthquake. In this article, a reliability-based methodology to carry out capacity design with partial factors is proposed and applied to the seismic design of RC bridge structures. This ensures that (i) all of the components undergo the desired ductile failure mode, (ii) the damage due to an earthquake is induced only at the bottom of the bridge pier and (iii) the probability of failure is at most equal to a specified value.  相似文献   

16.
针对一个实际钢塔斜拉桥工程,采用有限元软件SAP2000进行了动力特性和地震反应分析,并以主塔为混凝土塔的苏通大桥作为参照,对斜拉桥的动力特性、主塔地震反应和抗震性能等进行了比较分析。结果表明:相对于混凝土塔,钢桥塔的刚度和质量较小,轴压比略大,斜拉桥纵飘和主塔侧弯振型周期较长,主塔重力几何刚度对桥梁动力特性的影响较大,从而显著增大了塔顶及主梁的纵向地震位移,但对主塔及其基础的地震内力影响较小。钢塔斜拉桥的抗震性能较好,在7度地震区,地震作用不会控制钢塔及其基础的结构设计。  相似文献   

17.
提出利用磁流变阻尼器(MRD)对有损伤结构进行智能加固。根据MRD的特点,结合我国抗震设计规范,给出MRD智能加固的三个等级性能目标,对其进行量化,并确定MRD智能加固的设计要点。利用MRD对一有损伤钢筋混凝土框-剪偏心结构进行抗震加固,并进行振动台试验。结果表明,采用MRD智能加固后的结构抗震性能大大提高,优于用被动控制方法加固的结构。  相似文献   

18.
The work describes an extensive cost analysis for maintenance and seismic retrofit of typical existing road bridges, based on integrated procedures for assessment of state and seismic vulnerability. In particular, visual inspections to evaluate total sufficiency ratings and a simplified seismic assessment were carried out for each structure, according to procedures proposed in earlier works. The results were then used as input data for statistical analysis, to calibrate new unit maintenance, seismic retrofit and total cost equations. The procedure was applied to a stock of bridges in the province of Vicenza, north-east Italy. The results will allow public authorities and private managing companies to estimate economic indicators regarding the extent of resources required for bridge maintenance and retrofit in areas subject to seismic events.  相似文献   

19.
An assessment procedure based on structural system reliability principles, has been developed for highway bridges with concrete or composite decks. It concentrates on the ultimate flexural limit state of slabs and takes account of the fact that the failure of the structure is dependent on the combination of the applied loads, their variability, both spatial and in amplitude, and on the variability of geometric and material properties. Recognising that each of a number of topologically distinct collapse mechanisms may contribute to the overall probability of system failure, an optimisation technique is used in conjunction with structural reliability analysis in order to establish for each mechanism the critical geometry and the associated probability of occurrence.The procedure can be implemented in the assessment of existing bridge structures, where the use of plastic analysis may reveal strength reserves not utilised in design and, hence, alleviate the need for strengthening. By modelling the bridge as a virtual series system and analysing a finite number of collapse mechanisms, bounds on system failure probability in flexure can be estimated. An example of its intended use is presented for a solid slab concrete bridge deck.  相似文献   

20.
Fragility increment functions are developed to estimate the seismic fragility of reinforced concrete (RC) bridges subject to deterioration due to the onset and progression of corrosion of the reinforcement. For each mode of failure considered, the fragility at time t of a deteriorating bridge is obtained by multiplying the initial fragility of the undeteriorated bridge by a corresponding increment function expressed in terms of the environmental conditions, the original material properties, time, a measure of the seismic demand, and a set of unknown model parameters. The developed increment functions account for the effects on the fragility estimates of the loss of the reinforcement and of the increasing uncertainty over time. As an application, the developed increment functions are used to estimate the seismic fragility of an example RC bridge. The proposed fragility increment functions are useful to estimate the fragility of deteriorating bridges without any extra reliability analysis once the fragility of the undeteriorated bridge is known. In particular, the proposed fragility increment functions can be used to assess the time-variant fragility of bridges for applications such as reliability-based design, life-cycle cost analysis, and risk analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号