首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The development of a generalised framework for assessing bridge life-cycle performance and cost, with emphasis on analysis, prediction, optimisation and decision-making under uncertainty, is briefly addressed. The central issue underlying the importance of the life-cycle approach to bridge engineering is the need for a rational basis for making informed decisions regarding design, construction, inspection, monitoring, maintenance, repair, rehabilitation, replacement and management of bridges under uncertainty which is carried out by using multi-objective optimisation procedures that balance conflicting criteria such as performance and cost. A number of significant developments are summarised, including time-variant reliability, risk, resilience, and sustainability of bridges, bridge transportation networks and interdependent infrastructure systems. Furthermore, the effects of climate change on the probabilistic life-cycle performance assessment of highway bridges are addressed. Moreover, integration of SHM and updating in bridge management and probabilistic life-cycle optimisation considering multi-attribute utility and risk attitudes are presented.  相似文献   

2.
Chloride-induced corrosion of highway bridges constitutes a critical form of environmental deterioration and may result in significant escalation of seismic life-cycle costs due to increased fragility during earthquake events. Most of existing literature tends to adopt simplistic uniform area loss assumptions in lieu of potentially complex, yet realistic and more detrimental, pitting corrosion models for seismic vulnerability analysis. Since the degree of deterioration depends on the severity and duration of exposure, there exists a need to investigate the influence of uniform vs. pitting corrosion assumption on seismic life-cycle costs for varied chloride exposure conditions. A case-study example of a highway bridge in Central and Southeastern US reveals consideration of pitting corrosion as critical for extreme exposures compared to relatively minor settings. Subsequently this study provides recommendations to aid bridge engineers and stakeholders to balance between computational cost and accuracy of results to aid prompt decisions on rehabilitation of ageing bridges in different exposure conditions. A framework is also included to compute seismic life-cycle costs from generic measures of corrosion, independent of assumed exposure scenario. This framework is particularly helpful for seismic loss assessment of highway bridges in chloride exposure zones with periodic field measurements to estimate the extent of structural deterioration.  相似文献   

3.
This article provides a comprehensive procedure for the structural performance evaluation and life-cycle cost (LCC) analysis of reinforced concrete highway bridges located in extreme chloride-laden environments. An integrated computational methodology is developed to simulate the chloride intrusion and to estimate the corrosion initiation time. The effects of various influential parameters on the chloride diffusion process are examined and the changes in geometry and material properties of structural members are calculated over the entire life of the bridge. In order to evaluate the global structural degradation due to the corrosion mechanisms, an inventory of bridges with different structural attributes are investigated. The extent of capacity loss is calculated using the moment-curvature and nonlinear static (pushover) analysis. Results of this study are then utilised to find the LCC of bridges. Different inspection and maintenance strategies are considered to minimise the total LCC, which includes the initial construction cost, inspection and maintenance costs and service failure costs. The proposed approach indicates the inspection and maintenance intervals in a way that the inspection and maintenance costs are optimised while the safety of the bridge is ensured.  相似文献   

4.
Our knowledge to model, analyse, design, maintain, monitor, manage, predict and optimise the life-cycle performance of structures and infrastructures under uncertainty is continually growing. However, in many countries, including the United States, the civil infrastructure is no longer within desired levels of performance and safety. Decisions regarding civil infrastructure systems should be supported by an integrated reliability-based life-cycle multi-objective optimisation framework by considering, among other factors, the likelihood of successful performance and the total expected cost accrued over the entire life-cycle. The primary objective of this paper is to highlight recent accomplishments in the life-cycle performance assessment, maintenance, monitoring, management and optimisation of structural systems under uncertainty. Challenges are also identified.  相似文献   

5.
Cost-competent maintenance and management of civil infrastructure requires balanced consideration of both the structure performance and the total cost accrued over the entire life-cycle. Most existing maintenance and management systems are developed on the basis of life-cycle cost minimization only. The single maintenance and management solution thus obtained, however, does not necessarily result in satisfactory long-term structure performance. Another concern is that the structure performance is usually described by the visual inspection-based structure condition states. The actual structure safety level, however, has not been explicitly or adequately considered in determining maintenance management decisions. This paper reviews the recent development of life-cycle maintenance and management planning for deteriorating civil infrastructure with emphasis on bridges using optimization techniques and considering simultaneously multiple and often competing criteria in terms of condition, safety and life-cycle cost. This multiple-objective approach leads to a large pool of alternative maintenance and management solutions that helps active decision-making by choosing a compromise solution of preferably balancing structure performance and life-cycle cost.  相似文献   

6.
This paper proposes a novel probabilistic methodology for estimating the life-cycle reliability of existing reinforced concrete (RC) bridges under multiple hazards. The life-cycle reliability of an RC bridge pier under seismic and airborne chloride hazards is compared to that of a bridge girder under traffic and airborne chloride hazards. When conducting a life-cycle reliability assessment of existing RC bridges, observational data from inspections can provide the corrosion level in reinforcement steel. Random variables related with the prediction of time-variant steel weight loss can be updated based on the inspection results using Sequential Monte Carlo Simulation (SMCS). This paper presents a novel procedure for identifying the hazards that most threaten the structural safety of existing RC bridges, as well as the structural components with the lowest reliability when these bridges are exposed to multiple hazards. The proposed approach, using inspection results associated with steel weight loss, provides a rational reliability assessment framework that allows comparison between the life-cycle reliabilities of bridge components under multiple hazards, helping the prioritisation of maintenance actions. The effect of the number of inspection locations on the updated reliability is considered by incorporating the spatial steel corrosion distribution. An illustrative example is provided of applying the proposed life-cyle reliability assessment to a hypothetical RC bridge under multiple hazards.  相似文献   

7.
Currently in Sweden, the life-cycle measures applied on bridge edge beams may take up to 60% of the total costs incurred along the road bridges’ life span. Moreover, significant disturbances for the road users are caused. Therefore, the Swedish Transport Administration has started a project to develop alternative edge beam design solutions that are better for society in terms of cost. The purpose of this article is to investigate whether these proposals can qualify for more detailed studies through an evaluation and comparison based on a comprehensive life-cycle cost analysis. The alternatives including the standard design are applied to typical Swedish bridges. The impact of the values of the parameters with the largest influence is investigated by sensitivity analyses. Results with different life-cycle strategies are shown. The positive influences in the total life-cycle cost of a stainless steel reinforced solution and of the enhanced construction technique are estimated. The concrete edge beam integrated with the deck seems to be favourable, which is in line with international experience observed. Different designs may be appropriate depending on the bridge case and the life-cycle strategy. The Swedish Transport Administration will carry out a demonstration project in a bridge with one of the proposals.  相似文献   

8.
A novel approach and framework for the analysis of bridge networks is presented. The goal of the analysis is to assess the life-cycle performance of the network and its time-variant reliability. The proposed approach combines three important features that determine its ability to estimate with accuracy and robustness the reliability of a network along its life-cycle.The first one is that the reliability of the individual bridges is modeled as time-variant, due to the deterioration of their structural components. The network performance analysis is repeated for several time instants, with the relative reliability of the bridges. Therefore, the network performance indicators are also time-variant. In this way, the proposed procedure can be used as a basic tool for maintenance planning at the network level.The second asset is that the proposed framework takes into account complex (i.e. “generalized”) network layouts, not necessarily describable using series, parallel or series-parallel models. In fact, when all the possible traffic flows in a network and all the possible trip origins and destinations are considered, it is not feasible, in general, to model the network with a simple scheme. In the present paper, techniques derived from transportation engineering for the traffic flow distribution and assignment are used.The third feature is that the proposed approach considers a correlation structure among the states (in/out of service) of the various bridges of the network. In fact, bridges associated with the same network are likely to share similar characteristics and external loads. Therefore, a correlation structure for the service state of individual bridges is estimated and implemented in the analysis.A case study involving a transportation network with fourteen bridges is presented as a numerical application.  相似文献   

9.
In spite of the progress in developing methods and tools to support sustainable building design, there is still a lack of a formal approach to bridge the “no man’s land” gap between the traditional building engineering disciplines, and between these and the architecture, to achieve the level of building integration required for sustainability. This paper presents an integration framework that aims at facilitating the inclusion of life-cycle considerations in the design process from the outset, so that materials and systems are selected not only from environmentally friendly resources, but most importantly, to match service life performance expectations. The framework describes an iterative methodology to evaluate these expectations in practice, which is based on an understanding and modeling of the dynamics of the built environment to which materials, components, and systems are exposed. Quantitative methods and test protocols can be incorporated into the framework for assessing function-performance aspects of alternative solutions. Due to its complexity stemming from its inherent exposure to variable environmental loads and its multi-functionality, the framework focuses on addressing the life cycle of the building enclosure system. It is expected that the organization of the underlying principles of building life-cycle performance described in this paper will become a knowledge core that will facilitate a more integrated treatment of buildings in research, education, and practice.  相似文献   

10.
In this paper, an approach for integrating the information obtained from structural health monitoring in a life-cycle bridge management framework is proposed. The framework is developed on the basis of life-cycle system performance concepts that are also presented in this paper. The performance of the bridge is quantified by incorporating prior knowledge and information obtained from structural health monitoring using Bayesian updating concepts. This performance is predicted in the future using extreme value statistics. Advanced modelling tools and techniques are used for the lifetime reliability computations, including incremental nonlinear finite element analyses, quadratic response surface modelling using design of experiments concepts, and Latin hypercube sampling, among other techniques. The methodology is illustrated on an existing bridge in the state of Wisconsin.  相似文献   

11.
In the present study a comprehensive decision support system is developed for the formation of maintenance strategies with/without annual budget limitations. This system is based on life-cycle cost analysis of an entire bridge inventory, which comprises part of a highway network. The formulation of an optimum bridge maintenance program for an entire stock of bridge structures has been impeded historically by insufficient information concerning the existing structural conditions. The capability of this optimization system was enhanced by employing Genetic Algorithms in the formation of semi-optimal solutions. This system was tested by employing to formulate a set of semi-optimal bridge management programs for a set of selected existing bridges representing a typical al bridge inventory.  相似文献   

12.
Live and fatigue load models are foundations for the life-cycle design of highway bridges. Many highway bridges are now equipped with structural health monitoring (SHM) systems, which provide valuable data to establish load models. In this paper, traffic load models of the Binzhou Yellow River Highway Bridge are developed based on the field measurement of vehicles by an existing SHM system. The probabilistic distribution model and extreme value distribution of gross vehicle weight are statistically analysed using the monitoring data. The results indicate that they follow the bimodal lognormal and Gumbel distributions, respectively. The fatigue load spectrum is also studied. The logistic model is employed to predict the long-term traffic volume, and its parameters of the logistic model are updated using the monitored traffic volume. The combination of the fatigue load spectrum and the traffic volume forecast using the updated logistic model provides a load model for estimation of fatigue damage evolution of bridges.  相似文献   

13.
结构生命周期的可靠性管理   总被引:1,自引:3,他引:1  
结构的抗力性能、使用条件、环境作用等都是随时间变化的过程。结构的运行规律复杂且具有大量的不确定性和不确知性,单纯依靠设计来保证结构的安全性是不够的,而应该综合考虑设计、检测、维护等策略对结构生命周期的可靠性进行管理。首先分析了目前的可靠度设计方法的优点和局限性,对可靠性管理的概念和必要性进行了阐述。继而引入时变可靠度和时点可靠度指标,建立一套考虑安全控制和风险优化的结构生命周期可靠性管理框架,并对其中的若干理论问题进行了讨论。该框架的特点在于,由静态思路转向动态思路,强调信息的更新和充分利用,与现有设计理论和工程实践保持协调。  相似文献   

14.
Abstract:   Bridge managers are facing ever-increasing tasks of prioritizing limited budgets to cost-effectively maintain normal functionality of a huge inventory of deteriorating civil infrastructures such as highway bridges over the life cycle. A satisfactory maintenance planning scenario should meet managers' specified requirements for the optimum balance between whole-life costing and structural performance. This article presents a general computational procedure to prioritize on an annual basis maintenance efforts for deteriorating reinforced concrete bridge crossheads over a designated time horizon. Within each year, none or one of the available maintenance types with different performance improvement capabilities could be applied and the time of application for any maintenance intervention is considered to be uniformly distributed within a 1-year time interval. Effects of uncertainties associated with bridge crosshead deterioration processes with and without maintenance interventions are considered by means of Monte Carlo simulation to predict probabilistically structural performance and life-cycle maintenance cost. The resulting combinatorial optimization problem is automated by a multiobjective genetic algorithm. It produces a group of different sequences of annualized maintenance interventions that lead to optimized tradeoff among condition, safety, and life-cycle cost objectives. This enables bridge managers to determine a preferred annual maintenance prioritization solution by comparing different alternatives.  相似文献   

15.
This paper presents a project-level evaluation of highway maintenance options using the state increment life-cycle cost analysis method. The case study utilizes pavement management data specific to the New York State Thruway Authority (NYSTA). The study demonstrates that the state increment method can be used at the project-level to: (1) assess the effect of treatments on pavement condition and remaining life, (2) determine the optimal time and condition for various treatments using stochastic dynamic programming, (3) evaluate the effects of uncertainty in pavement performance, (4) rank alternatives for each state based on life-cycle cost, and (5) provide remaining life estimates. Based on the case study results, a reasonable probabilistic representation for the pavement state transitions is selected and the condition-treatment matching rules are suitably modified. It is concluded that the presented comprehensive project-level evaluation of highway maintenance has helped adjust and validate the modeling information used in decision making.  相似文献   

16.
整体预制钢-混凝土组合梁桥合理结构研究   总被引:1,自引:0,他引:1  
为了在中小跨径桥梁中推广使用钢-混凝土组合结构桥梁,提高桥梁的工业化建造水平和组合梁桥的装配化程度,提出了一种整体预制钢-混凝土组合梁桥结构。结合常用的中小跨径的需求,考虑公路运输条件和吊装能力,构建了整体预制钢-混组合梁结构基本单元,并提出了单元之间的连接方式,进一步形成整体桥梁。计算分析表明:所提出的整体预制钢-混组合梁,在受力性能方面均优于传统分离预制钢-混组合梁,在全寿命周期的经济性能方面优于现有的预制混凝土箱梁、预制混凝土T形梁,在施工性能方面相比于现有的预制混凝土箱梁、预制混凝土T形梁以及分离预制钢-混组合梁会明显提高施工效率、缩短施工工期,而且更容易保证施工质量,为桥梁工程提供了一种结构合理、施工便捷的结构形式。  相似文献   

17.
工程结构的绿色设计和绿色评价存在共性,在已建立的可持续发展工程结构全寿命周期设计理论体系基础上,参考国内外的绿色建筑评价体系,根据其共性构建了工程结构全寿命设计的绿色指标体系。该体系包含了三个指标,即以所处环境为对象的“环境评价指标”、以人为对象的“用户及社会满意度指标”和以区域和全球生态系统为对象的“可持续发展指标”。工程结构的全寿命设计传统指标是对现行设计方法的扩展和延伸,而绿色指标则是独立于传统设计方法体系之外的新体系,体现了全寿命设计方法的人文关怀和对自然的责任。为了将工程结构全寿命活动的环境和生态影响控制到最低水平,并使相关人群的利益最大化,通过指标分层、指标分类和权重分析,建立了建筑结构全寿命绿色设计指标体系。针对沿海高速公路桥梁结构的结构形式、用途和所处环境,构建了其全寿命设计绿色指标体系框架。  相似文献   

18.
集成化是建设工程项目管理的发展趋势,对于解决传统工程项目管理中存在的问题、提升工程项目管理水平具有重要的意义。首先分析集成化管理的涵义,阐述建设工程项目开展集成化管理的必要性。在此基础上,从全寿命期管理、全过程管理、全要素管理、全方位管理四个方面,构建基于全寿命期的建设工程项目集成化管理模式,并对质量、进度、造价、安全、环保等全要素目标的集成进行分析和探讨。最后,提出建设工程项目集成化管理模式实施的各项保障措施。  相似文献   

19.
Highway bridges are subjected to strength degradation processes. Under budget constraints, it is important to determine the best maintenance strategies. Optimized strategies, based on prediction models, are already considered for the maintenance and operation of highway bridges. Prediction models are updated both in space and time by using non-destructive testing methods. Nevertheless, there is an urgent need for the efficient inclusion of structural health monitoring (SHM) data in structural assessment and prediction models. Indeed, SHM allows keeping strength degradation processes under control and should be included in life-cycle cost models. The lifetime reliability of structures is characterized by survivor functions. The SHM data enable to update the probability density function of time to failure through a Bayesian process. The aim of this paper is threefold: (a) to include SHM data in a bridge life-cycle cost analysis, (b) to determine optimal maintenance strategies based on monitoring information, and (c) to show the benefits of SHM. Optimal strategies are determined considering the cases without and with including monitoring results; the benefit of monitoring is then highlighted. The proposed concepts are applied to the I-39 Northbound Bridge over the Wisconsin River in Wisconsin, USA. A monitoring program of that bridge was performed by the ATLSS Engineering Research Center at Lehigh University.  相似文献   

20.
Civil infrastructure facilities play a central role in the economic, social and political health of modern society. Such facilities are susceptible to ageing, which is stochastic in nature and makes their reliabilities time dependent. Life-cycle engineering analysis and risk-informed decision tools have advanced in recent years for managing public investments in performance assurance and risk mitigation of civil infrastructure. However, certain civil infrastructure projects may be designed for service periods that are substantially longer than what has been typically expected of buildings, bridges and similar facilities, extending the potential consequences of life-cycle engineering decisions far beyond the limits for which there is practical experience. Current assessment procedures will require modification to evaluate performance of civil infrastructure facilities over extended time frames and to support sustainable and equitable decisions affecting long-term public safety. This paper considers a number of key issues that must be addressed in life-cycle reliability assessment of civil infrastructure facilities that must remain functional for service periods of several generations, and introduces perspectives on risk that are germane to ensure sustainability and intergenerational equity in risk-informed decision-making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号