首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 400 concrete-filled steel tubular (CFST) arch bridges have been constructed worldwide so far. However, design codes or guidance for the in-plane strength design of CFST arches are yet to be developed. In current design practice, the philosophy for the in-plane strength design of reinforced and prestressed concrete arches is widely adopted for CFST arches. For this, the CFST arches are considered under central or eccentric axial compression and are treated similarly to CFST columns, and the classical buckling load of CFST columns is used as the reference elastic buckling load of CFST arches. However, under transverse loading, the in-plane elastic buckling behaviour of CFST arches, particularly shallow CFST arches, is very different from that of CFST columns under axial compression. In addition, different from CFST columns under central or eccentric axial compression, CFST arches are subjected to significant nonlinear bending actions and transverse deformations prior to buckling and these will influence the strength of CFST arches greatly. Therefore, it is doubtful if the current method for in-plane strength design of CFST arches can provide correct strength predictions. In this paper, a method for the in-plane strength design of CFST circular arches, which is consistent with the current major design codes for steel structures, is developed by considering both geometric and material nonlinearities. A design equation for the in-plane strength capacity of CFST arches under uniform compression, and a lower-bound design equation for the in-plane strength check of CFST arches under combined actions of bending and compression are proposed.  相似文献   

2.
《钢结构》2012,(2):78-79
迄今为止,全世界已有400多座钢管混凝土拱桥。然而,有关钢管混凝土拱面内承载力的设计规范仍没有。目前,钢管混凝土拱的设计广泛采用钢筋混凝土及预应力混凝土拱的面内承载力设计方法。这样钢管混凝土拱可认为受轴压或偏压作用,相当于钢管混凝土柱。将钢管混凝土柱的经典屈曲荷载作为钢管混凝土拱的参考弹性屈曲荷载。然而,在横向荷载作用下,钢管混凝土拱的面内弹性屈曲性能与轴压下的钢管混凝土柱完全不同,尤其是对于薄壁钢管混凝土拱。另外,与轴压或偏压下钢管混凝土柱不同,钢管混凝土拱在屈曲之前就发生非线性弯曲和横向变形,这严重影响钢管混凝土拱的承载力。因此,钢管混凝土面内承载力的设计方法是否正确值得商榷。提出与现有钢结构设计规范基本一致的钢管混凝土圆拱承载力设计方法,并同时考虑了几何非线性和材料非线性的影响。提出均匀轴压下钢管混凝土拱的面内承载力设计方程,及弯矩和轴压共同作用下钢管混凝土拱面内承载力验算的下限设计方程。  相似文献   

3.
为研究长期荷载作用对带脱空缺陷钢管混凝土柱受力性能的影响,以脱空类型、脱空率和长期荷载比为主要参数,对长期荷载作用下带脱空缺陷钢管混凝土短柱的变形特性和承载力进行了试验研究。试验结果表明:在长期荷载作用下,与普通无脱空缺陷钢管混凝土柱类似,脱空缺陷钢管混凝土柱徐变系数终值的上限值为0.9;长期荷载比大的脱空缺陷钢管混凝土柱较长期荷载比小的脱空缺陷钢管混凝土柱的承载力略大。采用有限元分析软件ABAQUS,对考虑长期荷载作用影响时脱空构件的受力性能进行分析,有限元计算结果和试验结果吻合良好。利用验证过的有限元模型,系统地分析了长细比、含钢率、钢管屈服强度、混凝土强度、长期荷载比、脱空率和荷载偏心率等参数对长期荷载作用下带脱空缺陷钢管混凝土柱的承载力影响规律。结果表明,混凝土脱空缺陷对考虑长期荷载作用的承载力影响系数的不利影响小于1.5%;现有的考虑长期荷载影响的普通钢管混凝土柱的设计方法可用于预测带脱空缺陷钢管混凝土柱的承载力。  相似文献   

4.
均布荷载作用下钢管混凝土拱长期稳定性能分析   总被引:1,自引:0,他引:1  
采用ABAQUS有限元软件建立了钢管混凝土抛物线无铰拱模型,利用UMAT引入了钢管混凝土非线性材料应力-应变关系,并采用EC2模型和逐步积分法分析了核心混凝土收缩徐变对拱的平面外稳定的影响,分析中考虑了加载龄期、长细比、矢跨比等参数的影响。分析时先对钢管混凝土拱施加正常使用阶段荷载,持荷一段时间后,增大外荷载直至抛物线拱失稳破坏,从而得到拱的长期稳定承载力。分析表明,长细比、加载龄期及矢跨比等参数变化对钢管混凝土抛物线拱的长期稳定性影响较为显著。低持荷荷载条件下(持荷荷载所引起的核心混凝土最大应力等级为30%),核心混凝土收缩徐变最大可使本文所分析参数范围的抛物线无铰拱稳定极限承载力降低15%。  相似文献   

5.
Y.-L. Pi  M.A. Bradford  F. Tin-Loi 《Thin》2007,45(3):352-362
An arch with an open thin-walled section that is subjected to a radial load uniformly distributed around the arch axis may suddenly buckle out of its plane of loading and fail in a flexural-torsional buckling mode. The classical flexural-torsional buckling load for an arch with an open thin-walled section under a uniform radial load has been obtained by a number of researchers, based on the consideration that the uniform radial load produces a uniform axial compressive force without in-plane bending prior to the occurrence of flexural-torsional buckling. This assumption is correct for deep arches. However, the uniform radial load may produce substantial bending actions in shallow arches prior to flexural-torsional buckling, and so the classical buckling analysis based on the assumption of uniform axial compression may produce incorrect flexural-torsional buckling loads for shallow arches. This paper investigates the flexural-torsional buckling of shallow arches with an open thin-walled section that are subjected to a radial load uniformly distributed around the arch axis. It is found that shallow arches under a uniform radial load are subjected to combined in-plane compressive and bending actions prior to flexural-torsional buckling, and that using the classical buckling solution for circular arches under uniform compression produces incorrect buckling loads for shallow arches. A rational finite element model is developed for the flexural-torsional buckling and postbuckling analysis of shallow arches with an open thin-walled section, which allows the buckling loads to be obtained correctly.  相似文献   

6.
This paper presents a performance-based analysis (PBA) technique based on fiber element formulations for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects. Geometric imperfections, residual stresses and strain hardening of steel tubes and confined concrete models are considered in the PBA technique. Initial local buckling and effective strength/width formulas are incorporated in the PBA program to account for local buckling effects. The progressive local buckling of a thin-walled steel tube filled with concrete is simulated by gradually redistributing normal stresses within the steel tube walls. Performance indices are proposed to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam-columns under axial load and biaxial bending. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a thin-walled CFST beam-column section to satisfy equilibrium conditions. The analysis algorithms for thin-walled CFST beam-columns under axial load and uni- and biaxial bending are presented. The PBA program can efficiently generate axial load-strain curves, moment-curvature curves and axial load-moment strength interaction diagrams for thin-walled CFST beam-columns under biaxial loads. The proposed PBA technique allows the designer to analyze and design thin-walled CFST beam-columns made of compact or non-compact steel tubes with any strength grades and normal and high-strength concrete. The verification and applications of the PBA program are given in a companion paper.  相似文献   

7.
现有规范采用“等效梁柱法”计算长细比不超过80的钢管混凝土拱的平面内稳定承载力,而实际工程中有近20%拱桥拱肋长细比超过上述限值,即大长细比钢管混凝土拱。因此,利用ABAQUS建立了有限元分析模型,在基于现有试验数据验证模型可靠性的基础上,对大长细比抛物线形钢管混凝土无铰拱在竖向均布荷载作用下的平面内稳定性能进行了分析,研究了长细比、矢跨比、含钢率、混凝土强度和钢材强度对拱肋平面内稳定承载力的影响;基于参数分析结果,对现有平面内整体稳定系数公式进行修正,提出了大长细比抛物线形钢管混凝土拱平面内稳定承载力设计公式。结果表明:拱肋稳定承载力随长细比增大显著降低,随矢跨比和含钢率增加近似线性提高。其中,矢跨比对大长细比拱肋影响更为显著,而含钢率对采用高强钢的拱肋影响更大;所提出的设计公式计算结果与有限元分析结果吻合良好,有限元分析结果与公式预测结果比值的均值为1.02~1.08,标准差为0.039~0.051,变异系数为3.74%~4.72%。  相似文献   

8.
The primary objective of this paper is to investigate the seismic behaviour of concrete-filled steel tubular (CFST) arches using incremental dynamic analysis (IDA). A nonlinear elastic–plastic finite element model is developed using OpenSees software and is verified with a shaking table test. Single-record IDA studies indicate that a CFST arch undergoes global dynamic instability when subjected to ground motions of increasing intensity levels. During this process, either dynamic elastic buckling or dynamic elastic–plastic buckling may occur. Dynamic strength, which is defined as the capacity for preventing global dynamic instabilities of CFST arches, is determined with a series of multi-record IDA calculations. A lower bound equation that takes into account the effect of slenderness ratio, axial compression ratio, and included angle is proposed for the prediction of the dynamic strength of CFST arches.  相似文献   

9.
李永进  陶忠 《工业建筑》2007,37(12):22-27
基于美国混凝土协会ACI 209(1992)提供的混凝土徐变和收缩模型,对长期荷载作用下中空夹层钢管混凝土柱的变形和承载力进行计算。分析加荷龄期、持荷时间、长期荷载比、名义含钢率、钢材屈服强度、内钢管厚度、混凝土强度、空心率、长细比和荷载偏心率等参数对中空夹层钢管混凝土柱变形特性和承载力的影响。最后,在系统分析各影响因素的基础上,提出长期荷载作用对中空夹层钢管混凝土柱承载力影响系数的计算方法。  相似文献   

10.
The ultimate strength and ductility of high strength thin-walled concrete-filled steel tubular (CFST) beam-columns with local buckling effects, are investigated in this paper, using a performance-based analysis (PBA) technique. The PBA technique accounts for the effects of geometric imperfections, residual stresses, strain hardening, local buckling and concrete confinement on the behavior of high strength thin-walled CFST beam-columns. The accuracy of the PBA technique is further examined by comparisons with experimental results. The PBA program is employed to study the effects of depth-to-thickness ratio, concrete compressive strengths, steel yield strengths and axial load levels on the stiffness, strength and ductility of high strength thin-walled CFST beam-columns under combined axial load and biaxial bending. The results obtained indicate that increasing the depth-to-thickness ratio and axial load levels significantly reduces the stiffness, strength and ductility of CFST beam-columns. Increasing concrete compressive strengths increases the stiffness and strength, but reduces the axial ductility and section performance of CFST beam-columns. Moreover, the steel yield strength has a significant effect on the section and strength performance of CFST beam-columns but does not have a significant effect on their axial and curvature ductility.  相似文献   

11.
钢管混凝土柱在长期荷载作用下变形计算方法初探   总被引:1,自引:0,他引:1  
刘威 《工业建筑》2003,33(4):63-66
钢管混凝土结构在长期荷载作用下的变形计算方法一直为工程界所关注。简要论述钢管混凝土柱在长期荷载作用下的力学性能研究现状 ,探讨了钢管混凝土的核心混凝土徐变与收缩计算模型的选取问题  相似文献   

12.
姜丽云  李明  范鸿波 《钢结构》2014,29(12):13-16
腹板开洞钢拱通过设置侧向支撑可以阻止钢拱发生平面外弯扭屈曲,支撑刚度的大小会对钢拱屈曲临界荷载产生影响.采用有限元方法分析了不同荷载、拱脚条件、支撑类型和位置对钢拱平面外屈曲稳定的影响.研究表明:在刚性支撑情况下,钢拱屈曲临界荷载随支撑刚度增大而增大,铰支钢拱屈曲半波随支撑数量的增加而增加,当支撑数量为n时,会出现n+1个屈曲半波.两种支撑类型共同工作时,在侧向刚度支撑足够的情况下,扭转支撑对钢拱平面外屈曲临界荷载的影响有限.当侧向支撑刚度达到临界支撑刚度时,其屈曲临界荷载不再随支撑刚度的增大而增大.  相似文献   

13.
For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.  相似文献   

14.
基于CEB-FIP MC90的混凝土时变模型,建立了按主从节点约束考虑钢管与混凝土共同工作的钢管混凝土时变分析模型,提出了高层钢管混凝土结构施工全过程的数值模拟方法.对某高层钢管混凝土结构进行了数值计算,计算中考虑了混凝土的收缩徐变效应和施工工序影响,与施工过程的监测结果做了对比分析.研究表明,施工过程和收缩徐变对高层钢管混凝土结构影响很大,实际结构在设计和施工中必须予以考虑.  相似文献   

15.
16.
This paper proposes a new relaxation model for steel tendons based on the equivalent creep coefficient to enable the accurate estimation of losses of cable forces. The equivalent creep coefficient works not only in the case of intrinsic relaxation but also under various boundary conditions. Based on the proposed relaxation model, an accurate finite element analysis of the time-dependent behavior of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation is devised based on the time integration method. Concrete members are modeled by beam elements while tendons are modeled by truss elements with nodes connected to the beam axis by perpendicular rigid arms. Then the individual and combined effects of concrete creep, concrete shrinkage and cable relaxation on the long-term performance of concrete structures are investigated. It is found that the proposed relaxation model and time integration method can provide a reliable method for time-dependent analysis. The numerical results obtained indicate that the interactions among these factors should be considered carefully in analyzing the long-term performance of concrete bridges.  相似文献   

17.
The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper. Firstly, the flexural stiffness and torsional stiffness of space truss arches are deduced. The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch. However, since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio, the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified. Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy. Secondly, the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio. By assuming that all components of space truss circular arches bear only axial force, the design formulas to prevent the local buckling of chord and transverse tubes are deduced. Finally, the bearing capacity design equations of space truss arches are proposed under vertical uniform load.  相似文献   

18.
在高层和超高层建筑中采用钢管混凝土结构,可充分利用空钢管所具有的强度和刚度,并能较好地解决混凝土硬化时间较长与施工速度之间的矛盾。但由此也会带来这样的问题,即在结构施工过程中,构件所受长期荷载随施工过程逐渐增加,徐变持续发展,混凝土卸载,内力重新分布,导致构件稳定承载力降低。本文运用DirichLet级数建立管内混凝土徐变模型,并应用非线性有限元软件ABAQUS对钢管混凝土徐变以及承载力进行了有限元计算,较好地模拟了钢管混凝土的徐变过程。本文回归分析了钢管混凝土的徐变性质,并认为可以用初应力的方法粗略估计徐变构件对承载力的影响。  相似文献   

19.
管拱面内两点非对称加载试验研究   总被引:7,自引:0,他引:7  
对钢管混凝土拱和钢管-钢管混凝土复合拱进行面内两点非对称加载试验。建立了双重非线性有限元计算模型,对模型拱的挠度、钢管应变、材料非线性与几何非线性影响、管内混凝土对极限承载力的影响进行了分析。分析结果表明,管内混凝土提高拱的极限承载力的能力与拱的加载工况有关,当拱以受弯为主时,这种提高作用较小,当拱以受压为主时,这种提高作用较大;在受力全过程中,材料非线性的影响是主要的,几何非线性的影响是次要的,但由于存在耦合作用,分析时应考虑双重非线性的影响;对于复合拱,拱肋在变刚度靠空钢管一侧的受力情况较为复杂与不利。  相似文献   

20.
High strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns under eccentric loading may undergo local and overall buckling. The modeling of the interaction between local and overall buckling is highly complicated. There is relatively little numerical study on the interaction buckling of high strength thin-walled rectangular CFST slender beam-columns. This paper presents a new numerical model for simulating the nonlinear inelastic behavior of uniaxially loaded high strength thin-walled rectangular CFST slender beam-columns with local buckling effects. The cross-section strengths of CFST beam-columns are modeled using the fiber element method. The progressive local and post-local buckling of thin steel tube walls under stress gradients is simulated by gradually redistributing normal stresses within the steel tube walls. New efficient Müller's method algorithms are developed to iterate the neutral axis depth in the cross-sectional analysis and to adjust the curvature at the columns ends in the axial load–moment interaction strength analysis of a slender beam-column to satisfy equilibrium conditions. Analysis procedures for determining the load–deflection and axial load–moment interaction curves for high strength thin-walled rectangular CFST slender beam-columns incorporating progressive local bucking and initial geometric imperfections are presented. The new numerical model developed is shown to be efficient for predicting axial load–deflection and axial load–moment interaction curves for high strength thin-walled rectangular CFST slender beam-columns. The verification of the numerical model and parametric studies is given in a companion paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号