共查询到20条相似文献,搜索用时 15 毫秒
1.
《Thin》2014
The primary objective of this paper is to investigate the seismic behaviour of concrete-filled steel tubular (CFST) arches using incremental dynamic analysis (IDA). A nonlinear elastic–plastic finite element model is developed using OpenSees software and is verified with a shaking table test. Single-record IDA studies indicate that a CFST arch undergoes global dynamic instability when subjected to ground motions of increasing intensity levels. During this process, either dynamic elastic buckling or dynamic elastic–plastic buckling may occur. Dynamic strength, which is defined as the capacity for preventing global dynamic instabilities of CFST arches, is determined with a series of multi-record IDA calculations. A lower bound equation that takes into account the effect of slenderness ratio, axial compression ratio, and included angle is proposed for the prediction of the dynamic strength of CFST arches. 相似文献
2.
Yuyin Wang Yue Geng Gianluca RanziSumei Zhang 《Journal of Constructional Steel Research》2011,67(3):471-483
Expansive concrete-filled steel tubes (ECFST) are commonly used in modern building and bridge applications. Despite their popularity, limited attention has been devoted to investigate the time-dependent behaviour of such elements. This paper intends to provide new experimental data for the benchmarking of numerical models. Particular attention is devoted to ECFST elements first loaded at quite early concrete ages, e.g. 5 days after concrete casting, to reflect the construction site practice. Eleven ECFST short columns were subjected to different levels of sustained axial loads applied at different concrete ages. Seven columns were then tested to failure to evaluate the long-term effects on their ultimate capacity. The accuracy of four currently available concrete models, EC2, MC90, AFREM and B3, in predicting the long-term response of ECFST elements was investigated based on the related experimental results. Investigation shows that the assumption of linear creep can apply to ECFST elements with initial concrete compressive stresses up to approximately 80% of the concrete strength, rather than the normally accepted upper limit of 40%-50%. During the service life, confinement does not affect the performance of ECFST elements. Model EC2 is adequate to predict the time-dependent response of ECFST elements. 相似文献
3.
Yong-Lin PiChangyong Liu Mark Andrew BradfordSumei Zhang 《Journal of Constructional Steel Research》2012,69(1):77-94
More than 400 concrete-filled steel tubular (CFST) arch bridges have been constructed worldwide so far. However, design codes or guidance for the in-plane strength design of CFST arches are yet to be developed. In current design practice, the philosophy for the in-plane strength design of reinforced and prestressed concrete arches is widely adopted for CFST arches. For this, the CFST arches are considered under central or eccentric axial compression and are treated similarly to CFST columns, and the classical buckling load of CFST columns is used as the reference elastic buckling load of CFST arches. However, under transverse loading, the in-plane elastic buckling behaviour of CFST arches, particularly shallow CFST arches, is very different from that of CFST columns under axial compression. In addition, different from CFST columns under central or eccentric axial compression, CFST arches are subjected to significant nonlinear bending actions and transverse deformations prior to buckling and these will influence the strength of CFST arches greatly. Therefore, it is doubtful if the current method for in-plane strength design of CFST arches can provide correct strength predictions. In this paper, a method for the in-plane strength design of CFST circular arches, which is consistent with the current major design codes for steel structures, is developed by considering both geometric and material nonlinearities. A design equation for the in-plane strength capacity of CFST arches under uniform compression, and a lower-bound design equation for the in-plane strength check of CFST arches under combined actions of bending and compression are proposed. 相似文献
4.
D. Hernández-FigueiridoM.L. Romero J.L. BonetJ.M. Montalvá 《Journal of Constructional Steel Research》2012,68(1):107-117
The paper describes 36 experimental tests conducted on rectangular and square tubular columns filled with normal and high strength concrete and subjected to a non-constant bending moment distribution with respect to the weak axis. The test parameters were the nominal strength of concrete (30 and 90 MPa), the cross-section aspect ratio (square or rectangular), the thickness (4 or 5 mm) and the ratio of the top and bottom first order eccentricities etop/ebottom (1, 0.5, 0 and − 0.5). The ultimate load of each test was compared with the design loads from Eurocode 4, presenting unsafe results inside a 10% safety margin. The tests show that the use of high strength concrete is more useful for the cases of non-constant bending moment, whereas if the aim is to obtain a more ductile behavior the use of concrete-filled columns is more appealing in the cases of normal strength concrete with non-constant bending moments because, although they resist less axial force than the members with HSC, they obtain a softened post-peak behavior. 相似文献
5.
The elastic flexural–torsional buckling behaviour of arches with a central elastic torsional restraint has been reported elsewhere by the authors, and it was found that a central elastic torsional restraint restricts the buckling shape of an elastic arch and increases its elastic buckling resistance. However, both the inelastic buckling and strength of arches with a central elastic torsional restraint have hitherto not been investigated. It is not known whether the threshold stiffness for elastic buckling can be applied to arches which buckle inelastically, nor is it known how to determine the strength of steel arches with a central elastic torsional restraint. This paper modifies a finite element model for the nonlinear inelastic flexural–torsional analysis of steel I-section arches by including the effects of elastic restraints, and uses it to investigate the influence of central elastic torsional restraints on the inelastic flexural–torsional buckling and strength of steel I-section arches. It is found that a central elastic torsional restraint increases the strength of steel arches, but that the increase in strength decreases as the modified slenderness of the arches decreases. The threshold value of the stiffness of a central elastic torsional restraint at which the inelastic strength of an arch is equal to that of the corresponding arch with a rigid restraint is related to both the modified slenderness and included angle of the arch. For an arch with a low modified slenderness and with a small included angle which buckles inelastically, the threshold restraint stiffness is much smaller than that for an arch which buckles elastically. Design formulae for the strengths of steel I-section arches in uniform bending and in uniform compression with a central elastic torsional restraint are proposed. Comparisons with finite element results show that the proposed formulae provide good predictions for the strength of thin-walled steel I-section arches with a central elastic torsional restraint. 相似文献
6.
Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns 总被引:2,自引:1,他引:1
An experimental study on the structural behaviour of concrete-filled stiffened thin-walled steel tubular columns is presented in this paper. The stiffening was achieved by welding longitudinal stiffeners on the inner surfaces of the steel tubes. Companion tests were also undertaken on 12 unstiffened concrete-filled steel tubular (CFST) columns, with or without steel fibres in the infill concrete. The test results showed that the local buckling of the tubes was effectively delayed by the stiffeners. The plate buckling initially occurred when the maximum load had almost reached for stiffened specimens, thus they had higher serviceability benefits compared to those of unstiffened ones. Some of the existing design codes were used to predict the load-carrying capacities of the tested composite columns. 相似文献
7.
Experimental study of high strength concrete-filled circular tubular columns under eccentric loading
J.M. PortolésM.L. Romero J.L. BonetF.C. Filippou 《Journal of Constructional Steel Research》2011,67(4):623-633
The paper describes 37 tests conducted on slender circular tubular columns filled with normal and high strength concrete subjected to eccentric axial load. The test parameters were the nominal strength of concrete (30, 70 and 90 MPa), the diameter to thickness ratio D/t, the eccentricity ratio e/D and the column slenderness (L/D). The experimental ultimate load of each test was compared with the design loads from Eurocode 4, which limits the strength of concrete up to 50 MPa. The aim of the paper is to establish the advisability of the use of high strength concretes as opposed to that of normal strength concretes by comparing three performance indices: concrete contribution ratio, strength index and ductility index. The results show for the limited cases analyzed that the use of high strength concrete for slender composite columns is interesting since this achieves ductile behavior despite the increase in load-carrying capacity is not greatly enhanced. 相似文献
8.
Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns 总被引:4,自引:0,他引:4
Test results on concrete-filled steel tubular stub columns with inner or outer welded longitudinal stiffeners under axial compression are presented in this paper. The research was mainly focused on square hollow section (SHS) columns; two rectangular hollow section (RHS) columns were also tested. A longitudinal stiffener was provided on each side of the stiffened SHS column, while only two stiffeners were welded to the longer sides of the stiffened RHS column. The main experimental parameters considered were the height-to-thickness ratio and stiffener rigidity. In addition, empty tubes with or without stiffeners, as well as unstiffened concrete-filled steel tubes were also tested for comparison. Requirements for stiffener rigidity are developed by modifying a formula presented in the literature. Existing theoretical model and design codes were used to predict the load versus axial strain relationships and load-carrying capacities of the adequately stiffened composite sections respectively; reasonable results were achieved. 相似文献
9.
This paper proposes an efficient numerical model for the simulation of the behavior of slender circular concrete-filled tubular columns subjected to eccentric axial load with single curvature, for the cases of both normal and high strength concrete. The paper focuses on the study of the influence that the variables affecting beam-column behavior (length and relative slenderness) and the variables affecting section behavior (diameter/thickness ratio, mechanical capacity of steel) have on the overall buckling of this type of column. An extended parametric study is carried out to propose design recommendations, primarily to establish the importance of the use of high strength concrete compared with that of normal strength concrete. The results show that for slender elements the optimum design is reached when the mechanical capacity of the steel is slightly lower than that of the concrete contribution. 相似文献
10.
Experimental study of hysteretic behaviour for concrete-filled square thin-walled steel tubular columns 总被引:2,自引:0,他引:2
In this paper, the hysteretic behaviour of concrete-filled thin-walled steel tubular (CFTST) columns was investigated experimentally. The parameters in the study included the axial load level and steel tube section type. Nine CFTST columns, including six columns with a longitudinal stiffener on each inner face of the steel tube and three columns with a longitudinal stiffener on the two opposite inner faces of the steel tube, were tested under a constant axial load in addition to a cyclic lateral load. The effect of axial load level on the hysteretic behaviour (stiffness, ductility and energy dissipation) was studied. Experimental results indicated that the CFTST columns under an axial load level below 0.5 exhibited plump hysteretic loops with a slight pinching effect, better ductility and energy dissipation capacity. The displacement ductility decreases significantly with an increase in the axial load level. Columns with two steel tube sections had almost the same load capacity, whilst the ductility and energy dissipation capacity of columns with a longitudinal stiffener on each inner face of the steel tube was better than that of columns with two opposite stiffeners. 相似文献
11.
This paper presents a numerical investigation on the post-fire behaviour of concrete filled steel tubular (CFST) column to restrained steel beam joint. An entire loading and fire phase, including ambient loading, heating with constant loads, cooling with constant loads and post-fire loading, was employed in the numerical analysis, and a finite element analysis (FEA) model was built to simulate the behaviour of CFST column to axially and rotationally restrained steel beam joints with external diaphragm connections under the entire loading and fire phase. For validation, the proposed modelling method was used to predict the test results of CFST columns and joints in fire and post-fire. The comparison demonstrates that the accuracy of the proposed FEA model is acceptable. Afterwards, the FEA model was used to analyse the mechanics characteristics of CFST column to restrained steel beam joints in the entire loading and fire phase. Based on the numerical analysis, the joint moment versus relative rotation angle relationship in the entire loading and fire phase was addressed, and the residual joint strength index and stiffness index were defined to evaluate the post-fire performance of joints. Finally, simplified calculating formulas were proposed to calculate the two indexes, which provide a simply and feasible method to evaluate the post-fire performance of external diaphragm joints in the CFST column - steel beam framed structure. 相似文献
12.
Ran Feng 《Journal of Constructional Steel Research》2008,64(11):1283-1293
This paper describes a test program on a wide range of concrete-filled cold-formed stainless steel tubular T-joints fabricated from square hollow section (SHS) and rectangular hollow section (RHS) brace and chord members. A total of 27 tests was performed. The chord member of the test specimen was filled with concrete along its full length. Both high strength stainless steel (duplex and high strength austenitic) and normal strength stainless steel (AISI 304) specimens filled with nominal concrete cylinder strength of 30 MPa were tested. The axial compression force was applied to the top end of the brace member, which was welded to the center of the chord member. Local buckling failure of brace member was the main failure mode observed during the tests. Hence, the axial compression force was then applied by means of a steel bearing plate to avoid failure of brace member. The failure modes of chord face failure and chord side wall failure as well as crushing of the concrete infill were observed. All the tests were performed by supporting the chord member of the specimen along its entire length to apply the pure concentrated force without any bending moment. The test results were also compared with design rules for carbon steel tubular structures, which is the only existing design guideline for concrete-filled tubular joints. It is shown that the design strengths predicted by the current design rules are quite conservative for the test specimens. It is also recommended that the contribution of stainless steel tubes should be included in the design rules since it has significant effects on the ultimate bearing capacity of concrete-filled stainless steel tubular T-joints. 相似文献
13.
Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns 总被引:5,自引:0,他引:5
X. Dai 《Journal of Constructional Steel Research》2010,66(7):931-21
This paper investigates the axial compressive behaviour of short concrete-filled elliptical steel columns using the ABAQUS/Standard solver, and a new confined concrete stress-stain model for the concrete-filled elliptical steel hollow section is proposed. The accuracy of the simulation and the concrete stress-strain model was verified experimentally. The stub columns tested consist of 150 × 75 elliptical hollow sections (EHSs) with three different wall thicknesses (4 mm, 5 mm and 6.3 mm) and concrete grades C30, C60 and C100. The compressive behaviour, which includes the ultimate load capacity, load versus end-shortening relationship and failure modes, were obtained from the numerical models and compared against the experimental results, and good agreements were obtained. This indicated that the proposed model could be used to predict the compressive characteristics of short concrete-filled elliptical steel columns. 相似文献
14.
Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns 总被引:2,自引:0,他引:2
This paper reports a finite element analysis of the compressive behaviour of CFDST stub columns with SHS (square hollow section) or CHS (circular hollow section) outer tube and CHS inner tube. A set of test data reported by different researchers were used to verify the FE modelling. Typical curves of average stress versus longitudinal strain, stress distributions of concrete, interaction of concrete and steel tubes, as well as effects of hollow ratio on the behaviour of CFDST stub columns, were presented. The influences of important parameters that determine sectional capacities of the composite columns were investigated. 相似文献
15.
The availability of high strength steels and concrete leads to the use of thin steel plates in concrete-filled steel tubular beam-columns. However, the use of thin steel plates in composite beam-columns gives a rise to local buckling that would appreciably reduce the strength and ductility performance of the members. This paper studies the critical local and post-local buckling behavior of steel plates in concrete-filled thin-walled steel tubular beam-columns by using the finite element analysis method. Geometric and material nonlinear analyses are performed to investigate the critical local and post-local buckling strengths of steel plates under compression and in-plane bending. Initial geometric imperfections and residual stresses presented in steel plates, material yielding and strain hardening are taken into account in the nonlinear analysis. Based on the results obtained from the nonlinear finite element analyses, a set of design formulas are proposed for determining the critical local buckling and ultimate strengths of steel plates in concrete-filled steel tubular beam-columns. In addition, effective width formulas are developed for the ultimate strength design of clamped steel plates under non-uniform compression. The accuracy of the proposed design formulas is established by comparisons with available solutions. The proposed design formulas can be used directly in the design of composite beam-columns and adopted in the advanced analysis of concrete-filled thin-walled steel tubular beam-columns to account for local buckling effects. 相似文献
16.
Dalin Liu 《Journal of Constructional Steel Research》2006,62(8):839-846
This paper presents an experimental and analytical study of the behaviour of high-strength rectangular concrete-filled steel tubular (CFT) columns subjected to eccentric loading. Four slender and 16 stub CFT columns were tested to investigate their structural behaviour. The test parameters were material strengths (), cross-sectional aspect ratio (1.0-2.0), slenderness ratio (10 and 60) and load eccentricity ratio (e/H=0.10-0.42). Favourable ductility performance was observed for all specimens during the tests. Experimental failure loads are employed to calibrate the specifications in the design codes EC4, ACI and AISC. Results show that EC4 overestimates the failure loads of the specimens by 4%. ACI and AISC conservatively predict the failure loads by 14% and 24%, respectively. An analytical model is developed to predict the behaviour of high-strength rectangular CFT columns subjected to eccentric loading. Calibration of the model against the test results shows that it closely estimates the ultimate capacities of the columns by 3%. 相似文献
17.
An arch with an open thin-walled section that is subjected to a radial load uniformly distributed around the arch axis may suddenly buckle out of its plane of loading and fail in a flexural-torsional buckling mode. The classical flexural-torsional buckling load for an arch with an open thin-walled section under a uniform radial load has been obtained by a number of researchers, based on the consideration that the uniform radial load produces a uniform axial compressive force without in-plane bending prior to the occurrence of flexural-torsional buckling. This assumption is correct for deep arches. However, the uniform radial load may produce substantial bending actions in shallow arches prior to flexural-torsional buckling, and so the classical buckling analysis based on the assumption of uniform axial compression may produce incorrect flexural-torsional buckling loads for shallow arches. This paper investigates the flexural-torsional buckling of shallow arches with an open thin-walled section that are subjected to a radial load uniformly distributed around the arch axis. It is found that shallow arches under a uniform radial load are subjected to combined in-plane compressive and bending actions prior to flexural-torsional buckling, and that using the classical buckling solution for circular arches under uniform compression produces incorrect buckling loads for shallow arches. A rational finite element model is developed for the flexural-torsional buckling and postbuckling analysis of shallow arches with an open thin-walled section, which allows the buckling loads to be obtained correctly. 相似文献
18.
In modern structural constructions, concrete-filled steel tubular (CFT) columns have gradually become a central element in structural systems like tall buildings, bridges and so forth. The effective parameters on load carrying capacity of CFT columns are the bond between the steel and internal concrete, local buckling strength of steel tube, creep of concrete and loading conditions of column at connections. Considering these effective parameters, a novel section is suggested which can be used for columns of tall buildings and bridges with large spans. The main characteristic of the suggested steel section is internal longitudinal symmetric stiffeners. In the present study, a comparative investigation into the behavior of this novel section (with circular and octagonal shapes) and the most common used sections of CFT columns has been carried out under axial and cyclic loading. Having verified the finite element modeling, several different analyses have been undertaken. The results of the analyses clearly exhibit the increase in strength and ductility of the suggested novel section under axial and cyclic loading and therefore, its application is recommended in construction practice. 相似文献
19.
20.
In-plane buckling behavior of slender parabolic concrete-filled
steel tubular arches with fixed ends
现有规范采用“等效梁柱法”计算长细比不超过80的钢管混凝土拱的平面内稳定承载力,而实际工程中有近20%拱桥拱肋长细比超过上述限值,即大长细比钢管混凝土拱。因此,利用ABAQUS建立了有限元分析模型,在基于现有试验数据验证模型可靠性的基础上,对大长细比抛物线形钢管混凝土无铰拱在竖向均布荷载作用下的平面内稳定性能进行了分析,研究了长细比、矢跨比、含钢率、混凝土强度和钢材强度对拱肋平面内稳定承载力的影响;基于参数分析结果,对现有平面内整体稳定系数公式进行修正,提出了大长细比抛物线形钢管混凝土拱平面内稳定承载力设计公式。结果表明:拱肋稳定承载力随长细比增大显著降低,随矢跨比和含钢率增加近似线性提高。其中,矢跨比对大长细比拱肋影响更为显著,而含钢率对采用高强钢的拱肋影响更大;所提出的设计公式计算结果与有限元分析结果吻合良好,有限元分析结果与公式预测结果比值的均值为1.02~1.08,标准差为0.039~0.051,变异系数为3.74%~4.72%。 相似文献