共查询到20条相似文献,搜索用时 93 毫秒
1.
电力系统动态环境经济调度优化隶属于非线性优化问题范畴,并具有多目标、高维、多约束条件等特点。经
典的数学规划方法无法处理此类复杂问题。为此,提出了新的方法来解决这个问题。首先,通过代价惩罚因子将双目
标优化问题转化为单目标优化问题。然后,设计启发式搜索策略来解决调度问题中的爬坡约束、动态电力平衡约束。
采用启发式策略修正解决方案,能够提高群体的多样性,拓展搜索空间。基于优先列表的启发式策略能够使能耗低的
火力发电机拥有更高的优先级进行更多的电力输出,以得到更优的调度解决方案。最后,改进差分进化算法,以加快
搜索的速度并提高解决方案的质量。 相似文献
2.
动态经济环境调度(DEED)问题是电力系统调度中一类含大规模约束的高维多目标优化问题,传统的进化算法易于陷入局部最优,使得所获的Pareto前沿分布性和收敛性差。为了充分挖掘免疫系统的克隆选择原理,提出一种混杂免疫多目标优化算法(HIMOA)。该算法以传统进化算法为基本框架,面对高维决策变量优化易于陷入局部最优的缺陷,改进外部存档更新机制以保存历代优秀的多样性个体,采用克隆、高斯突变策略强化局部开采能力,有效地迫使算法跳出停滞搜索状态。为应对大规模约束,提出逐步微调机组出力策略,提高进化群体的可行性。数值仿真实验以10机系统为测试算例,将HIMOA与著名的六种算法MODE、NSGA-Ⅱ、IMOEA/D-CH、ADEA、MOHDE_SAT、MONNDE进行比较分析,结果表明,HIMOA能为DEED问题的10机系统提供较好的Pareto解,所获的Pareto前沿收敛性和分布性优越于其他算法,各评价指标的箱型图表明HIMOA具有优越于其他算法的统计特征。 相似文献
3.
抢修任务多目标动态调度能够有效解决“战时损伤装备不断出现,而抢修时间与抢修力量有限”这一突出矛盾,但由于新抢修需求的出现时刻具有不确定性,采用现有的时间(或数量)分批驱动策略,会导致抢修力量不能对新抢修需求进行及时响应、抢修力量出现闲置、抢修效益降低。为解决该问题,开展了战时抢修任务多目标动态调度的动态驱动策略研究。提出了抢修任务多目标动态调度问题及其总体求解思路。设计了基于抢修需求信息和抢修组状态的2种动态驱动策略,提出了一种新的动态驱动策略“混合分批+基于抢修组状态”。采用均匀设计思想,构造了6组测试问题实例,并通过实验分析了在多种因素共同影响的情况下,3种动态驱动策略的优劣性及适用性。仿真结果表明:与其它动态驱动策略相较,新的动态驱动策略“混合分批+基于抢修组状态”具有明显的优越性。 相似文献
4.
动态多目标优化问题(Dynamic multi-objective optimization problems, DMOPs)已成为工程优化的研究热点, 其目标函数, 约束函数和相关参数都可能随时间不断变化, 如何利用搜索到的历史最优解对新的环境变化做出快速响应, 是设计动态多目标优化进化算法(Dynamic multi-objective optimization evolutionary algorithm, DMOEA)的重点和难点. 本文在介绍DMOEA的基础上, 分析了近年来基于个体和种群级别的环境响应策略, 多策略混合等的DMOEA主要研究进展, 并介绍了DMOEA的性能测试函数, 评价指标以及在工程优化领域中的应用, 分析了DMOEA研究中仍面临的主要问题, 展望了未来的研究方向. 相似文献
5.
针对单独采用冷启动方式而出现再次收敛速度慢、单种交叉算子自适应不足以及正态变异多样性程度偏弱等问题,提出一种基于自适应启动策略的新型混合交叉动态约束多目标优化算法。在算法设计中,首先采用冷热混合方式识别环境动态调整的程度,并引用柯西变异增强多样性;然后混合BLX α、SBX和DE三种差分进化经典交叉算子,并通过各自贡献度自适应调整其竞争力,以增强交叉操作对环境动态变化的自适应性;最后采用精英与进化两个群体相互协作,进一步均衡算法的局部和全局搜索能力。在6个标准测试函数上的仿真结果表明,该算法能在不同环境下动态识别调整的程度,增加初始种群多样性以提高算法的跟踪效果,且能在同一环境下自适应调整交叉算子以提高算法的收敛速度。 相似文献
6.
7.
机组短期负荷环境/经济调度多目标混合优化 总被引:1,自引:0,他引:1
环境/经济短期负荷调度主要由调度周期内的最优机组组合和负荷环境/经济分配组成,本文将变权重多目标进化算法与混沌局部优化相结合形成混合优化算法应用到电站机组环境/经济运行多目标优化问题中,在混合多目标优化算法中采用组合结构基因,其中机组基因用于机组组合全局粗寻优,参数基因用于负荷分配局部优化,基因修正与罚函数结合解决约束问题.通过对优秀个体进行基于线性搜索的混沌局部优化,可加快收敛速度和降低计算时间.实例仿真结果说明所提出的算法能获得较好分布的Pareto优化解. 相似文献
8.
9.
基于生态策略的动态多目标优化算法 总被引:1,自引:0,他引:1
动态多目标优化问题(dynamic multi-objective optimization problems, DMOP)的目标函数、约束条件或者问题的相关参数随时间变化,是多目标优化领域非常重要的研究难题,传统方法难以很好地追踪其变化的Pareto前沿.针对动态多目标优化问题特点,提出了一种基于生态策略的动态多目标优化算法(dynamic multi-objective optimization algorithm based on ecological strategy, ESDMO).各种群可以采取不同的进化策略应对外部环境变化,捕食种群与被捕食群体间的竞争也促进种群不断提高生存力.受此启发,采用了一种多种群协同进化机制与强化学习策略相结合的协同进化计算模型.该算法定义了一种环境自检算子用于检测环境的变化,不同的种群采取不同的生态策略来应对动态环境变化.经过各种类型的动态多目标优化问题测试,实验结果表明所提出的算法具有更好的解集多样性、均匀性和分布性,验证了该算法对于解决动态多目标优化问题是有效的. 相似文献
10.
11.
为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。 相似文献
12.
为了在动态环境中很好地跟踪最优解,考虑动态优化问题的特点,提出一种新的多目标预测遗传算法.首先对 Pareto 前沿面进行聚类以求得解集的质心;其次应用该质心与参考点描述 Pareto 前沿面;再次通过预测方法给出预测点集,使得算法在环境变化后能够有指导地增加种群多样性,以便快速跟踪最优解;最后应用标准动态测试问题进行算法测试,仿真分析结果表明所提出算法能适应动态环境,快速跟踪 Pareto 前沿面. 相似文献
13.
A new glowworm swarm optimization (GSO) algorithm is proposed to find the optimal solution for multiple objective environmental economic dispatch (MOEED) problem. In this proposed approach, technique for order preference similar to an ideal solution (TOPSIS) is employed as an overall fitness ranking tool to evaluate the multiple objectives simultaneously. In addition, a time varying step size is incorporated in the GSO algorithm to get better performance. Finally, to evaluate the feasibility and effectiveness of the proposed combination of GSO algorithm with TOPSIS (GSO–T) approach is examined in four different test cases. Simulation results have revealed the capabilities of the proposed GSO–T approach to find the optimal solution for MOEED problem. The comparison with own coded weighted sum method incorporated GSO (WGSO) and other methods reported in literatures exhibit the superiority of the proposed GSO–T approach and also the results confirm the potential of the proposed GSO–T approach to solve the MOEED problem. 相似文献
14.
提出一种基于双局部最优的多目标粒子群优化算法,与可行解为优的约束处理方法相结合,来求解决非线性带约束的多目标电力系统环境经济调度问题。该算法针对传统多目标粒子群算法多样性低的局限性,通过对搜索空间的分割归类来增加帕累托最优解的多样性;并采用一种新的双局部最优来引导粒子的搜索,从而增强了算法的全局搜索能力。算法加入了可行解为优的约束处理方法对IEEE30节点六发电机电力系统环境经济负荷分配模型分别在几个不同复杂性问题的情况进行仿真测试,并与文献中的其他算法进行了比较。结果表明,改进的算法能够在保持帕累托最优解多样性的同时具有良好的收敛性能,更有效地解决电力系统环境经济调度问题。 相似文献
15.
郑晓菁 《计算机工程与科学》2015,37(8):1533-1539
针对多区域电力系统经济调度问题,在满足联络线传输限制、多种燃料特征、阀点效应和禁止运转区的约束条件下,综合考虑多区域电力负载成本最小的要求,建立数学计算模型,利用人工蜂群优化法快速地寻找全局最优解。通过两个不同规模、不同程度复杂性的仿真测试系统进行计算,结果验证了所提算法的可行性。考虑获得解的质量,将人工蜂群优化算法与DE、EP、RCGA算法进行对比分析,结果表明所提算法在实际电力系统中解决多区域经济分配问题具有有效性和优越性。 相似文献
16.
多目标优化问题的蚁群算法研究 总被引:29,自引:2,他引:29
将离散空间问题求解的蚁群算法引入连续空间,针对多目标优化问题的特点,提出一种用于求解带有约束条件的多目标函数优化问题的蚁群算法.该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略,并将信息素交流和基于全局最优经验指导两种寻优方式相结合,用以加速算法收敛和维持群体的多样性.通过3组基准函数来测试算法性能,并与NSGAII算法进行了仿真比较.实验表明该方法搜索效率高,向真实Pareto前沿逼近的效果好,获得的解的散布范围广,是一种求解多目标优化问题的有效方法. 相似文献
17.
In this paper, a novel CMOQPSO algorithm is proposed, in which cultural evolution mechanism is introduced into quantum-behaved particle swarm optimization (QPSO) to solve multiobjective environmental/economic dispatch (EED) problems. There are growing concerns about the ability of QPSO to handle multiobjective optimization problems. Two important issues in extending QPSO to multiobjective context are the construction of exemplar positions for each particle and the maintenance of population diversity. In the proposed CMOQPSO, one particle is measured for multiple times at each iteration in order to enhance its global searching ability. Belief space, which is based on cultural evolution mechanism and contains different types of knowledge extracted from the particle swarm, is adopted to generate global best positions for the multiple measurements of each particle. Moreover, to maintain population diversity and avoid premature, a novel local search operator, which is based on the knowledge in belief space, is proposed in this paper. CMOQPSO is compared with several state-of-art algorithms and tested on EED systems with 6 and 40 generators respectively. The comparative results demonstrate the effectiveness of the proposed algorithm. 相似文献
18.
Environmental economic dispatch of fixed head of hydrothermal power systems is viewed as a mulitobjective optimization problem in this paper. The practical hydrothermal system possesses various constraints which make the problem of finding global optimum difficult. This paper develops an improved multiobjective estimation of distribution algorithm to solving the above problem. A local learning operation is added into the original regularity model-based multiobjective estimation of distribution algorithm (RM-MEDA) in the improved approach so as to improve the local search ability and enhance the convergence efficiency. Furthermore, a repair mechanism is employed to repair the searched infeasible solutions in order to be able to search in the feasible region. In the experiment, the results obtained by the proposed approach have been compared with those from other three MOEAs: NSGA-II, NNIA, and RM-MEDA. Results from some pervious reported methods have also been employed to compare with our method. In addition, the results demonstrate the superiority of this proposed method as a promising MOEA to solve this power system multiobjective optimization problem. 相似文献
19.
AbstractIn this study, symbiotic organisms search (SOS) algorithm is proposed to solve the dynamic economic dispatch with valve-point effects problem, which is one of the most important problems of the modern power system. Some practical constraints like valve-point effects, ramp rate limits and prohibited operating zones have been considered as solutions. Proposed algorithm was tested on five different test cases in 5 units, 10 units and 13 units systems. The obtained results have been compared with other well-known metaheuristic methods reported before. Results show that proposed algorithm has a good convergence and produces better results than other methods. 相似文献
20.
为解决电力系统中的经济负荷分配问题,提出一种将约束优化与粒子群优化算法相结合的混合算法,同时引入直接搜索方法。使得混合后的粒子群优化算法不但具有高效的全局搜索能力,而且具有较强的局部搜索能力,避免陷入局部最优,提高求解精度。对两个实例进行测试,与其他智能算法的结果比较,证明提出的算法可以有效找到可行解,避免陷入局部最优,实现问题的快速求解。 相似文献