共查询到7条相似文献,搜索用时 0 毫秒
1.
用XRD,TEM及SEM测试了稀土基AB5型贮氢合金Mm(NiMnSiAlCu)4.3Co0.6-xFex(x=0~0.4) 的微观结构,并全面测试了合金在铸态及快淬态下的电化学性能.研究结果表明,铸态合金为双相结构,主相为CaCu5型相,还有少量Ce2Ni7相,经快淬处理后,第二相减少.对铸态合金,随Fe含量的增加,合金的容量有所降低,循环稳定性得到改善.对快淬态合金,当铁含量大于0.2时,合金的容量急剧下降,而循环稳定性大幅度增加.这主要是由于铁的加入使合金的微观结构发生了变化. 相似文献
2.
采用感应熔炼方法制备了La0.75Mg0.25Ni3.5-xCrx(x=0,0.05,0.1,0.2,0.3)四元贮氢合金,系统地研究了合金B端Cr元素对Ni部分替代对合金相结构及电化学性能的影响.X衍射(XRD)分析表明,La0.75Mg0.25Ni3.5合金是由La2Ni7相组成.随着Cr元素的加入,该类合金中出现LaNi5相及LaNi3相,且随着Cr含量的增加而增多.电化学测试表明,随Cr含量的增加,合金电极活化次数变化不大,最大放电容量逐步降低,合金的最大放电容量由x=0.05时的383.43 mAh/g下降到x=0.3时的348.40 mAh/g;而合金的高倍率放电性能呈现先增后减的趋势,当电流密度为900 mA/g时,合金的高倍率放电性能由83.66%(x=0)增加到92.57%(x=0.05)然后减小到83.9%(x=0.3);循环稳定性先增加后下降,当x=0.1时合金电极的循环寿命达到最大(S100=74.71%). 相似文献
3.
用铸造及快淬工艺制备了La-Mg-Ni系(PuNi3型)贮氢合金La2Mg(Ni0.85Co0.15)9Bx(x=0,0.05,0.1,0.15,0.2),分析测试了铸态及快淬态合金的微观结构与电化学容量,研究了硼及快淬工艺对合金微观结构及电化学容量的影响.结果表明,铸态合金具有多相结构,包括(La,Mg)Ni3相(PuNi3型)、LaNi5相,一定量的LaNi2相和微量的Ni2B相,经快淬处理后Ni2B相消失.硼的加入对铸态及快淬态合金的容量产生不同的影响,铸态合金的容量随硼含量的增加而单调下降,而快淬态合金的容量随硼含量的增加有一极大值.快淬处理对含硼及不含硼合金的容量也有不同的影响,随淬速的增加,不含硼合金的容量单调下降,而含硼合金的容量可以获得一个极大值. 相似文献
4.
研究元素Co部分替代Ni对La2Ca2Mg2Ni13合金相结构和电化学性能的影响。结果表明,La2Ca2Mg2Ni13-xCox(x=0,0.25,0.5,0.75和1.0)系列合金主要由PuNi3型结构的(La,Ca,Mg)(Ni,Co),相和CaCu5型结构的(La,Ca)(Ni,Co),相组成,随合金中Co替代量x的增加,PuNi3型主相的含量先增加后降低。当x=0.75时,合金具有最高的放电容量360mA·h/g,并具有较好的循环稳定性。 相似文献
6.
系统研究了La(Ni,Sn)5+x(x=0~0.35) 无Co贮氢合金的化学计量比对其晶体结构及电化学性能的影响.X射线衍射分析仪(XRD)分析表明,上述合金均为单相CaCu5结构.但在过计量比(x>0)合金的结构中,有部分1a位置元素(La)的原子被沿c轴定向排列的Ni-Ni“哑铃”对所替代,且其替代La原子的分数随x的增大而增多,从而导致合金晶胞的c轴及c/a比值明显增大,晶胞体积有所减小,并显著降低了合金的吸氢体积膨胀率.电化学测试表明,增大x值可使合金的循环稳定性得到显著提高,但也使合金的最大放电容量和高倍率放电性能有所降低.研究发现,由于合金的化学计量比增大会使其结构中含有较多的Ni-Ni“哑铃”对,合金的抗吸氢粉化能力得到了明显的改善,从而使合金在充放电过程中的反应比表面积有所减小、腐蚀速率得到抑制、循环稳定性得到显著提高.但合金反应比表面积的减小也导致了电极反应的速率的减小,从而使其高倍率放电性能有所降低. 相似文献
7.
研究Mg替代Ca对Ca_(9-x)Mg_xNi_(33)=1,2和3)合金相结构和贮氢性能的影响。结果表明,Ca_(9-x)Mg_xNi_(33)合金均由复相组成;随Mg添加量的增加,合金的主相由(Ca,Mg)_2Ni_7向(Ca,Mg)Ni_3转变。Ca_8MgNi_(33)合金在298 K的吸氢容量(体积分数)大约为1.71%,是商业应用LaNi_5合金的1.4倍。随着合金Mg添加量的增加,合金吸放氢热力学性能得到改善。Ca_7Mg_2Ni_(33)合金具有良好的吸放氢可逆性。 相似文献