首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
在多项式空间提出了一种带k个形状参数的k次均匀B样条,这类曲线与标准k次均匀B样条类似,每段曲线由k+1个控制顶点生成,它们不仅具有k次均匀B样条许多常见性质,而且利用形状参数的不同取值能够整体或局部调控曲线曲面形状。包含标准均匀B样条为其特例。  相似文献   

2.
构造了一组由三个含参数m的函数构成的函数组, 该函数组线性无关, 称之为mB基。mB基具有非负性、规范性、对称性等良好的性质, 而且具有非常特殊的端点性质。基于mB基定义了一种新的样条曲线, 称之为mB曲线。mB曲线段可以转化为Bézier曲线的形式, 借助Bézier曲线的de Casteljau算法, 给出了mB曲线段的递推求值算法。mB曲线具有与二次均匀B样条曲线相同的端点行为, 即插值于控制多边形首末边的中点, 与控制多边形的首末边相切。另外, mB曲线的形状和连续性均可以通过参数m进行自由调节, 而且调节方式既可以是整体的, 又可以是局部的。利用张量积方法, 将mB曲线推广到了曲面, 称之为mB曲面。mB曲面具有与mB曲线类似的性质。  相似文献   

3.
三次均匀B样条曲线的扩展   总被引:53,自引:21,他引:53  
给出四次多项式调配函数,它是三次B样条函数的扩展.基于给出的调配函数,建立一种带形状参数的分段多项式曲线的生成方法.通过改变形状参数的取值,可以调整曲线接近其控制多边形的程度;可以调整曲线从三次均匀B样条曲线的两侧逼近三次均匀B样条曲线.选取不同的形状参数值,可以得到不同位置的C^2连续的曲线,且所给曲线与三次均匀B样条曲线有相同的端点性质.最后给出了曲线设计的计算实例.  相似文献   

4.
运用积分定义的方式,构造了带多形状参数的C-Bézier曲线曲面,改变形状参数的值,能整体或局部调控曲线曲面的形状。它们包含C-Bézier曲线曲面为其特例且具有C-Bézier曲线曲面的主要性质。还给出了带2个形状参数的二次C-Bézier曲线段G1和C1拼接条件以及带3个形状参数的三次C-Bézier曲线段G1、C1和G2拼接条件。  相似文献   

5.
为便于对均匀B样条曲线进行形状修改,利用二次均匀B样条基函数所需满足的条件,扩展二次均匀B样条基函数,构造出三次多项式调配函数.基于给出的调配函数,建立1种带形状参数的分段多项式曲线.调整形状参数可使三次多项式曲线在二次均匀B样条曲线两侧摆动.最后给出实例,构造出带局部调节参数G^1的连续曲线.该方法可以通过调整参数扩大二次均匀B样条曲线的调整范围.  相似文献   

6.
当α→0时,均匀CB样条曲线逼近相应阶的均匀B样条曲线,改变α的取值时,生成的均匀CB样条曲线逼近控制多边形的极限位置是相应阶的均匀B样条曲线.为了突破这种逼近极限,构造一种新的均匀CB样条曲线.先构造一种三次均匀CB样条基,再运用积分递归定义出任意阶的均匀CB样条基.由这些基构造的均匀CB样条曲线与原CB样条曲线具有类似的性质:凸包性、几何不变性、局部性、对称性等,但随着α取值的不同生成相应阶的均匀B样条两侧曲线,能够更好的逼近控制多边形.最后给出了用新的均匀CB样条曲线精确表示椭圆,圆,抛物线,螺旋线等.定义的新均匀CB样条拓展了均匀CB样条曲线曲面的造型能力.  相似文献   

7.
三次均匀B样条曲线的新扩展及应用   总被引:2,自引:0,他引:2  
给出了一组含有2个形状参数λi,μi的三次多项式调配函数,它是三次均匀B样条基函数的扩展;分析了这组调配函数的性质,基于此组调配函数定义了一种带2个局部形状控制参数λi,μi的分段多项式样条曲线,它以三次均匀B样条曲线为特殊情形。新曲线不仅具有灵活的局部形状可调性和更强的描述能力,而且可以在不改变曲线G1连续性和不影响曲线其他各段形状的同时,通过改变局部形状参数对曲线每段的形状进行多种方式的局部调整。最后讨论了新曲线在曲线造型中的应用,并给出了一个扩展曲面的定义。实例表明,新扩展曲线为曲线/曲面的设计提供了一种有效的新方法。  相似文献   

8.
一种新的均匀样条曲线曲面设计方法   总被引:4,自引:0,他引:4  
本文根据均匀B样条基函数的de Boor-Cox递推公式提出了一种新的样条曲线曲面设计方法。该方法从满足正性、局部支柱性和权性的初始基函数出发,可构造出具有高阶低次或低次高阶的多项式样条基函数和多种函数类型的样条函数。给出了设计这种样条曲线曲面的几种方法和实例,并对基函数的连续可微性进行了证明。该样条基函数和样条曲线曲面具有和均匀B样条类似的几何性质,且均匀B样条是其特例,可用于曲线曲面的几何造型和样条插值。  相似文献   

9.
带局部形状参数的三次均匀B样条曲线的扩展   总被引:3,自引:0,他引:3  
带形状参数的B样条曲线的构造已成为计算机辅助几何设计中的热点问题.为了使形状参数具有局部修改功能,给出了两类带局部形状参数的调配函数,它们都是三次均匀B样条基函数的扩展.基于给出的调配函数,定义了两种带局部形状参数的分段多项式曲线.可以通过改变局部形状参数的取值对曲线进行局部调整.调整形状参数可使三次多项式曲线在三次均匀B样条曲线远离控制多边形的一侧摆动,而四次多项式曲线在三次均匀B样条曲线的两侧摆动.最后讨论了它们在曲线设计及曲线插值中的应用.造型实例表明,该类曲线在计算机辅助几何设计中具有重要的应用价值.  相似文献   

10.
带形状参数的二次B样条曲线   总被引:1,自引:1,他引:1  
提出一种带形状参数的二次B样条曲线,这种曲线对非均匀节点为C^1-连续,对于均匀节点且当所有参数都等于1时为C^2-连续.与不带形状参数的二次B样条曲线相比,其形状既能整体变化又能局部变化,并且能从两侧逼近控制多边形.此外,毋需采用重节点技术或解方程组就能直接插值控制点或控制边.  相似文献   

11.
利用积分方法构造了带双形状参数的C-B样条曲线基函数,这类曲线具有标准C-B样条曲线主要性质,如连续性、凸包性等;根据形状参数的不同取值可以整体或者局部调控曲线形状,由此生成的曲线与曲面,作为一种新的几何造型方法,可应用于CAD/CAM领域。  相似文献   

12.
首先运用两种方法构造了带多形状参数的C^3连续的插值曲线.其次,利用方法二把构造出的带多形状参数的C^4连续的B样条曲线与参数化的奇异多边形按某个因子调配,可自动生成C^4连续的插值曲线.所有这些曲线的形状既能整体又可局部调控.  相似文献   

13.
针对一类含有3个形状参数的广义三阶Bézier(GCB)曲线,推导出GCB曲线的基函数与四次Bernstein基函数的转换公式。利用升阶公式,建立了它与四次Bézier曲线的关系,给出了几何结构和矩阵表示形式。GCB曲线不仅具有三次Bézier曲线的特征,而且在控制多边形保持不变的条件下,具有形状可调性和对控制多边形更好的逼近性。实例表明:构造的GCB曲线为曲线曲面设计提供了有效的新方法。  相似文献   

14.
二次均匀TC-B样条曲线的扩展   总被引:1,自引:0,他引:1  
构造了一种新的三角多项式基函数--带参数的均匀二次TC-B样条基,并由此定义了曲线--带参数的均匀二次TC-B样条曲线.该曲线继承了均匀TC-B样条曲线的优点,有着与其相类似的性质,例如凸包性、几何不变性、变差缩减性等.同时它还能精确表示圆弧、椭圆弧等二次曲线,推广到空间即可以表示旋转曲面.此外,由于引入了形状控制参数,使其在工业设计中具有更大的灵活性和更广的应用范围.  相似文献   

15.
多形状参数的二次双曲多项式曲线   总被引:1,自引:1,他引:1       下载免费PDF全文
给出了带多个形状参数的二次双曲多项式基函数,该基函数具有二次非均匀B样条基的绝大多数性质。基于这种基函数,建立了一种带多个形状参数的二次双曲多项式曲线,该类曲线对于非均匀节点为C1连续。根据形状参数的不同取值,曲线的形状既能整体又能局部地变化。并且毋需采用重节点技术或解方程组,就能直接插值某些控制点或控制边。此外,它还能精确表示双曲线。  相似文献   

16.
均匀T-B样条曲线的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在对均匀T-B样条基函数及其曲线端点特性分析的基础上提出了n次均匀T-B样条基函数的表达式,通过重新参数化使其参数区间范围规范为[0,1]。给出了均匀T-B样条曲线的升阶公式、控制点反求公式以及均匀T-B样条曲线与T-Bézier曲线间G1/C1拼接的条件,所得结论具有明确造型意义,能较好地应用于曲线曲面造型系统中。  相似文献   

17.
提出一种新的含参数的四次多项式基函数,四次Bemstein基函数是它的特例,给出其与四次Bemstein基的转换矩阵。分析了该组基函数的性质,定义了带有形状参数的四次Bezier曲线曲面,它们具有四次Bezier曲线曲面的特性,且当参数均取1时即为四次Bezier曲线曲面。对于给定的控制顶点,可以通过改变形状参数的值整体或局部调控曲线曲面的形状。实例表明,该方法应用于曲线曲面设计是有效的。  相似文献   

18.
目的 为了使扩展的曲线曲面保留传统Bézier方法以及B样条方法良好性质的同时,具备保形性、形状可调性、高阶连续性以及广泛的应用性,本文在拟扩展切比雪夫空间利用开花的性质构造了一组最优规范全正基,并利用该基进行曲线曲面构造。方法 首先构造一组最优规范全正基,并给出该基生成的拟三次TC-Bézier曲线的割角算法;接着利用最优规范全正基的线性组合构造拟三次均匀TC-B样条基,根据曲线的性质假设拟三次均匀B样条基函数具有规范性和C2连续性,进而得到其表达式;然后证明拟三次均匀TC-B样条基具有全正性和高阶连续性;最后定义拟三次均匀TC-B样条曲线曲面,并证明曲线曲面的性质,给出曲线表示整圆和旋转曲面的表示方法,设计出球面和旋转曲面的直接生成方法。结果 实验表明,本文在拟扩展切比雪夫空间构造的具有全正性曲线曲面,不仅能够灵活地进行形状调整,而且具有高阶连续性、保形性。结论 本文在三角函数空间利用两个形状参数进行曲线曲面构造,大量的分析以及案例说明本文构造的曲线曲面不仅保留了传统的Bézier方法以及B样条方法的良好性质,而且具备保形性、形状可调性、高阶连续性以及广泛的应用性,适合用于曲线曲面设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号