首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu2ZnSnS4 (CZTS) thin films were deposited by sputtering on glass substrates using stacked precursors. The stacked precursor thin films were prepared from Cu, SnS2 and ZnS targets at room temperature with different stacking orders of Cu/SnS2/ZnS/glass (A), ZnS/Cu/SnS2/glass (B) and SnS2/ZnS/Cu/glass (C). The stacked precursor thin films were sulfurized using a tubular rapid thermal annealing system in a mixed N2 (95%)+H2S (5%) atmosphere at 550 °C for 10 min. The effects of the stacking order in the precursor thin films on the structural, morphological, chemical, electrical and optical properties of the CZTS thin films were investigated. X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy studies showed that the annealed CZTS thin film using a stacking order A had a single kesterite crystal structure without secondary phases, whereas stacking orders B and C have a kesterite phase with secondary phases, such as Cu2−xS, SnS2 and SnS. The annealed CZTS thin film using stacking order A showed a very dense morphology without voids. On the other hand, the annealed CZTS thin films using stacking orders B and C contained the volcano shape voids (B) and Sn-based secondary phases (C) on the surface of the annealed thin films. The direct band gap energies of the CZTS thin films were approximately 1.45 eV (A), 1.35 eV (B) and 1.1 eV (C).  相似文献   

2.
Cu2ZnSnS4 (hereafter CZTS) thin films were successfully formed by vapor-phase sulfurization of precursors on a soda lime glass substrate (hereafter SLG) and a Mo-coated one (hereafter Mo-SLG). From the optical properties, we estimate the band-gap energy of this thin film as 1.45–1.6 eV which is quite close to the optimum value for a solar cell. By using this thin film as an absorber layer, we could fabricate a new type of thin film solar cell, which was composed of Al/ZnO:Al/CdS/CZTS/Mo-SLG. The best conversion efficiency achieved in our study was 2.62% and the highest open-circuit voltage was 735 mV. These device results are the best reported so far for CZTS.  相似文献   

3.
Cu2ZnSnS4 (CZTS) absorbers were grown by sulfurization of Cu/ZnSn/Cu precursors in sulfur atmosphere. The reaction mechanism of CZTS formation from the precursor was analyzed using XRD and Raman spectroscopy. The films with a single phase CZTS were formed at 560 and 580 °C by sulfurization for 30 min. The film grown at 560 °C showed bi-layer morphology with grooved large grains on the top and dense small grains near the bottom of the film. On the other hand, the film grown at 580 °C showed large grains with grooves that are extended from surface top to bottom of the film. The solar cell fabricated with the CZTS film grown at 560 °C showed the best conversion efficiency of 4.59% for 0.44 cm2 with Voc=0.545 V, Jsc=15.44 mA/cm2, and FF=54.6. We found that further improvement of the microstructure of CZTS films can increase the efficiency of CZTS solar cells.  相似文献   

4.
Thin films of Cu2ZnSnS4 (CZTS), a potential candidate for absorber layer in thin film heterojunction solar cell, have been successfully deposited by spray pyrolysis technique on soda-lime glass substrates. The effect of substrate temperature on the growth of CZTS films is investigated. X-ray diffraction studies reveal that polycrystalline CZTS films with better crystallinity could be obtained for substrate temperatures in the range 643-683 K. The lattice parameters are found to be a=0.542 and c=1.085 nm. The optical band gap of films deposited at various substrate temperatures is found to lie between 1.40 and 1.45 eV. The average optical absorption coefficient is found to be >104 cm−1.  相似文献   

5.
By sulfurization of E---B evaporated precursors, CZTS(Cu2ZnSnS4) films could be prepared successfully. This semiconductor does not consist of any rare-metal such as In. The X-ray diffraction pattern of CZTS thin films showed that these films had a stannite structure. This study estimated the optical band gap energy as 1.45 eV. The optical absorption coefficient was in the order of 104cm−1. The resistivity was in the the order of 104 Ω cm and the conduction type was p-type. Fabricated solar cells, Al/ZnO/CdS/CZTS/Mo/Soda Lime Glass, showed an open-circuit voltage up to 400 mV.  相似文献   

6.
The properties of Cu2ZnSnS4 (CZTS) thin films deposited by sol-gel sulfurization were investigated as a function of the chemical composition of the sol-gel solutions used. The chemical composition ratio Cu/(Zn+Sn) of the sol-gel solution was varied from 0.73 to 1.00, while the ratio Zn/Sn was kept constant at 1.15. CZTS films deposited using sol-gel solutions with Cu/(Zn+Sn)<0.80 exhibited large grains. In addition, the band gaps of these Cu-poor CZTS thin films were blue shifted. Solar cells with the structure Al/ZnO:Al/CdS/CZTS/Mo/soda lime glass were fabricated under non-vacuum conditions. The solar cell with the CZTS layer deposited using the sol-gel solution with Cu/(Zn+Sn)=0.80 exhibited the highest conversion efficiency of 2.03%.  相似文献   

7.
Cu2ZnSnS4 thin films have been successfully prepared by a novel synthesis process that involves a single step deposition of Cu2ZnSnS4 followed by a post-annealing treatment at 550 °C for 60 min in the atmosphere of N2+H2S (5%). The microstructure, morphology, composition and optical property of the film have been investigated in detail. It is found that the Na2S2O35H2O concentration in the solution has a significant effect on the Cu2ZnSnS4 thin films. X-ray diffraction data indicates that the annealed Cu2ZnSnS4 thin films have a kesterite structure with preferred orientation along the (1 1 2) plane. Uniform and compact topographies are observed in some annealed films. From the energy dispersive X-ray spectroscopy analysis, it can be seen that Cu-poor and Zn-rich Cu2ZnSnS4 thin films have been obtained. The direct band gap energy of the film is about 1.5 eV.  相似文献   

8.
We fabricated Cu2ZnSnS4 (CZTS) thin films using two different methods, spray pyrolysis and sulfurization of Cu-Zn-Sn metallic films. Spray pyrolysis was carried out under air ambient with modified ultrasonic spray system. Sulfurizations of metallic Cu-Zn-Sn films were done for stacked metallic films, Cu/Sn/Zn/glass, Cu/Sn/Cu/Zn/glass and Sn/Cu/Zn/glass, which were prepared by sputtering method in high vacuum chamber. The sprayed films were not observed to be grown well with good crystallinity, compared with CZTS films made by sulfurization of stacked metallic films. However, it was found that application of additional sulfurization to sprayed CZTS films induced great improvement of crystallinity to the level of the sulfurized metallic films. This implicates that spray pyrolysis with additional sulfurization is a good method for fabrication of CZTS films, especially as a low-cost fabrication technique. All CZTS films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy measurements.  相似文献   

9.
Polycrystalline Cu2ZnSnS4 (CZTS) thin films have been directly deposited on heating Mo-coated glass substrates by Pulsed Laser Deposition (PLD) method. The results of energy dispersive X-ray spectroscopy (EDX) indicate that these CZTS thin films are Cu-rich and S-poor. The combination of X-ray diffraction (XRD) results and Raman spectroscopy reveals that these thin films exhibit strong preferential orientation of grains along [1 1 2] direction and small Cu2−xS phase easily exists in CZTS thin films. The lattice parameters and grain sizes have been examined based on XRD patterns and Atom Force Microscopy (AFM). The band gap (Eg) of CZTS thin films, which are determined by reflection spectroscopy varies from 1.53 to 1.98 eV, depending on substrate temperature (Tsub). The optical absorption coefficient of CZTS thin film (Tsub=450 °C) measured by spectroscopic ellipsometry (SE) is above 104 cm−1.  相似文献   

10.
Thin film of Cu2ZnSnS4 (CZTS) has been successfully deposited by sol–gel technique on n-type silicon and glass substrates to fabricate a heterojunction photodiode. The structural properties of the film were investigated by atomic force microscopy. The AFM image of the Cu2ZnSnS4 film reveals that the film is a nanostructure material formed from nanoparticles with the particle size of 50–90 nm. The optical band gap, Eg of the Cu2ZnSnS4 film was found to be 1.48 eV and the obtained optical band gap suggests that CZTS is very suitable for photovoltaic and optoelectronic applications. The current–voltage characteristics of the Al/n-Si/Cu2ZnSnS4/Al diode exhibit a good rectification behavior with ideality factor of 2.84 and barrier height of 0.738 eV. The interface states of the diode were analyzed by series resistance and conductance-voltage methods. The presence of interface states in series resistance–voltage plots was confirmed by the illumination. The interface state density Dit for the diode was found to be 3.63 × 1012 eV−1 cm−2. The obtained results indicate that the Al/n-Si/Cu2ZnSnS4/Al diode is a photosensor based on controlling of interface states by illumination.  相似文献   

11.
Cu2ZnSnS4 (CZTS) thin films prepared by a non-vacuum process based on the sulfurization of precursor coatings, consisting of a sol-gel solution of Cu, Zn, and Sn, under H2S+N2 atmosphere were investigated. The structure, microstructure, and electronic properties of the CZTS thin films as well as solar cell parameters were studied in dependence on the H2S concentration. The sulfurization process was carried out at 500 °C for 1 h in an H2S+N2 mixed-gas atmosphere with H2S concentrations of 3%, 5%, 10%, and 20%. As the H2S concentration decreased from 20% to 5%, the S content of the CZTS thin films decreased. However, when the H2S concentration was decreased below 3%, the S content of the films began to increase. A CZTS thin film prepared with an H2S concentration of 3% had grains in the order of 1 μm in size, which were larger than those of films prepared at other H2S concentrations. Furthermore, the most efficient solar cell, with a conversion efficiency of 2.23%, was obtained from a sample sulfurized at an H2S concentration of 3%.  相似文献   

12.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

13.
The electrodeposition of CuInSe2 is investigated to improve the stoichiometric properties of CuInSe2 layers on indium tin oxide (ITO)-coated glass substrates and to develop one-step electrodeposition method for solar cell applications. XPS was utilized for the characterization of the surface properties of CuInSe2 layers. The influence of the complexing agent, e.g. benzotriazole, bulk concentration of Cu and Se and deposition potentials on the stoichiometric properties, are discussed.  相似文献   

14.
Cathodic electrodeposition in the presence of EDTA in aqueous solution was used to prepare Cu2S thin film deposited on Ti substrate. The effect of deposition potential, concentration and deposition time was studied to determine the optimum condition for electro-deposition process. Cyclic voltammetry was performed to elucidate the electrodic processes that occur while potentials for electrodeposition were applied to determine the optimum potential for electrodeposition. The thin films are characterised by X-ray diffractometry. The photoactivity of the deposited films and their conduction types were evaluated using photoelectrochemical technique. The band gap energy and type of optical transitions were determined from optical absorbance data.  相似文献   

15.
Chemical vapor deposition (CVD) in an open tube system was employed to deposit single-phase CuGaSe2 thin films on plain and Mo-coated glass substrates. The use of HCl and ternary CuGaSe2 source material resulted in non-stoichiometric volatilization of the source material. The use of binary source materials – Cu2Se and Ga2Se3 – in combination with I2 and HCl as the respective transport agents yielded single-phase CuGaSe2 thin films while the source materials were volatilized stoichiometrically. Mo/CuGaSe2/CdS/ZnO devices were fabricated from these samples exhibiting an open-circuit voltages up to Voc=853 mV.  相似文献   

16.
In this study, we investigate the physical properties and photocatalytic activities of TiO2 thin films doped with low valence (Fe3+, Co2+, and Ni2+) and high valence (Mo5+, Nb5+, and W6+) cations. Clear difference in results from various analytical tools between groups was identified. The presence of different oxidation states and a higher degree of crystallinity in the high valence cation doped-TiO2 thin films seemed beneficial in terms of the transfer and separation of photo-generated electrons and holes in the TiO2 medium and on the surface, resulting in higher photocatalytic conversion of trichloroetylene.  相似文献   

17.
Cu2ZnSnS4 (CZTS) is a kesterite semiconductor consisting of abundantly available elements. It has a band gap of 1.5 eV and a large absorption coefficient. Hence, thin films made of this material can be used as absorber layers of a solar cell. CZTS films were deposited on soda lime and Na free borosilicate glass substrates through Ultrasonic Spray Pyrolysis. The diffusion of sodium from soda lime glass was found to have a profound effect on characteristics like grain size, crystal texture and conductivity of CZTS thin films. Copper ion concentration also varied during the deposition and it was observed that the carrier concentration was enhanced when there was a deficiency of copper in the films. The effect of sodium diffusion and copper deficiency in enhancing the structural and electrical properties of CZTS films are presented in this paper.  相似文献   

18.
The controlled incorporation of sodium into the absorber layer of CuInS2 solar cells improved cell performance remarkably. Without toxic KCN treatment, conversion efficiencies of over 6% were achieved by sulfurization of sodium-containing precursors. We also investigated the characteristics of the sodium-incorporated CuInS2 films by intentional addition and diffusion from a soda-lime glass. The ternary compound semiconductor of NaInS2 was found to form mainly on the surface of each of the CuInS2 films.  相似文献   

19.
Ternary silver-indium-sulfide samples were deposited on fluorine-doped tin oxide (FTO) coated glass substrates using a one-step electrodeposition method. A new procedure for the deposition of AgInS2 samples is reported. The effect of the [Ag]/[In] molar ratio in solution bath on the structural, morphological, and photoelectrochemical properties of samples was examined. X-ray diffraction patterns of samples show that the films are the AgInS2 phase. The thickness, direct band gap, and indirect band gap of the films were in the ranges 209-1021 nm, 1.82-1.85 eV, and 1.44-1.51 eV, respectively. The carrier densities and flat-band potentials of films obtained from Mott-Schottky and open-circuit potential measurements were in the ranges of 4.2×1019-9.5×1019 cm−3 and −0.736 to −0.946 V vs. the normal hydrogen electrode (NHE), respectively. It was found that the samples with molar ratio [Ag]/[In]=0.8 in solution bath had a maximum photocurrent density of 9.28 mA/cm2 with an applied bias of +1.0 V vs. an Ag/AgCl electrode in contact with electrolyte containing 0.25 M K2SO3 and 0.35 M Na2S. The results show that high-quality AgInS2 films can be deposited on FTO-coated glass substrates for photoelectrochemical (PEC) applications.  相似文献   

20.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号