首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 345 毫秒
1.
连拱隧道围岩压力计算方法与动态施工力学行为研究   总被引:1,自引:0,他引:1  
由于双连拱隧道的多分部开挖支护的结构荷载转换过程多,围岩应力变化和围岩与结构相互作用关系复杂,目前在设计、施工中仍然存在一些问题:(1) 勘察设计围岩分类与施工揭露实际围岩级别常有差异,并难以实现及时变更.(2) 尚无满足连拱隧道特点的围岩压力理论,特别是在浅埋偏压条件下围岩荷载估计偏差较大.(3) 施工中经常出现支护失效、衬砌裂缝及渗漏泄水等工程安全、质量问题.针对连拱隧道中的问题,进行围岩压力计算方法和动态施工力学行为研究,主要研究成果有:(1) 对于连拱隧道,围岩塑性区受中墙及施工方案影响较小,主要与最终开挖跨度有关.在计算荷载时要考虑最不利工况,连拱隧道坑道宽度取整个连拱隧道的宽度是合理的,偏于安全的.(2) 应用比尔鲍曼理论求得塌落拱曲线方程,然后用作图法在连拱隧道外侧作一个切线与以地形的坡度求出的塌落拱曲线方程的切线相平行,两平行线的距离即为地形偏压临界覆盖厚度.运用此方法求得连拱隧道大跨度条件下的偏压连拱隧道地形偏压临界覆土厚度,为偏压连拱隧道设计提供可靠依据.(3) 针对连拱隧道断面远大于单线隧道,围岩压力大于按单线隧道宽度修正结果所出现的问题,提出对于大跨度双连拱隧道,在极浅埋、浅埋条件下,仍然分别采用全土柱理论荷载和谢家烋理论荷载;在深埋条件下,推荐双连拱隧道竖直地层压力采用适合双连拱大断面隧道特点的修正比尔鲍曼理论围岩压力计算公式.(4) 对于浅埋偏压连拱隧道,不仅要考虑非对称的地层主动荷载,还要调整浅埋侧地层被动荷载,提出浅埋偏压连拱隧道地层主动偏压荷载和被动不均匀荷载确定方法及地形偏压情况下隧道支护结构的合理计算方法,并求得不同坡率、不同围岩级别条件下浅埋侧土体的弹性抗力系数的合理取值,为设计中偏压连拱隧道采用荷载结构模式计算时浅埋侧土体的弹性抗力系数取值提供参考.(5) 在充分吸收国内外围岩分类经验的基础上,针对隧道施工期间的现场围岩判别特点与要求,提出一种现场围岩快速评价方法,该方法以定量与定性指标相结合,现场观察、量测及快速评价.另外针对隧道围岩实际力学指标难以获取的难题,提出应用围岩Q指标和现场点荷载强度推测围岩物理力学参数的方法,并结合围岩快速评价结果,综合确定隧道围岩实际力学指标.(6) 对于浅埋偏压连拱隧道,侧导洞应该先开挖深埋侧侧导洞,而主洞应该先开挖浅埋侧主洞;而对于非偏压连拱隧道,在围岩条件较好时主洞开挖可采用上下台阶法,且主洞开挖合理的工作面间距应约为2.0D~3.0D(D为单拱跨度);在中隔墙完成后,部分回填,使正洞初期支护能直接作用在中隔墙上,不仅有效提高支护整体刚度,还使中隔墙受力更合理,改善中隔墙受力状态.经富溪偏压连拱隧道工程施工与现场监测结果检验,提出的连拱隧道坑道宽度取值、偏压连拱隧道深浅埋分界、围岩主动压力与围岩被动压力计算方法、现场围岩级别快速评价以及施工方法正确合理,可为工程建设提供重要技术支持和经验.  相似文献   

2.
浅埋偏压连拱隧道中墙优化分析   总被引:16,自引:0,他引:16       下载免费PDF全文
浅埋偏压连拱隧道中墙型式直接关系到隧道工程施工及正常运营,本文采用有限元数值方法对不同中墙型式下偏压连拱隧道结构受力特征作了计算分析,偏压连拱隧道采用复合曲中墙结构将有助于改善中墙受力状况,减小应力集中及上部位移,降低衬砌开裂渗水的可能性,从而为偏压连拱隧道合理设计提供理论根据。  相似文献   

3.
采用数值模拟技术,结合某高烈度地震区双连拱隧道抗减震技术研究,通过分析埋深及围岩参数的变化对双连拱隧道地震动力响应的影响进行了数值模拟研究,分析总结了相应参数变化对双连拱隧道地震动力响应的影响规律,同时对地震动力作用下双连拱隧道断面位移和内力的变化规律进行分析研究,找出了地震动力作用下双连拱隧道的变形和受力薄弱部位.  相似文献   

4.
浅埋大断面大跨度连拱隧道支护体系现场监测试验研究   总被引:1,自引:0,他引:1  
浅埋大断面大跨度连拱隧道跨度大、埋深浅、围岩稳定性差,地质条件复杂,为保证施工顺利进行,需加强隧道施工监测,根据监测调整后续施工方法。对浅埋大断面大跨度连拱隧道支护体系的现场监测试验方案及不同开挖工序下隧道支护体系受力特点进行了分析与研究。研究结果表明:①左右洞上台阶开挖引起支护体系应力分布较大变化,是隧道支护主要监测控制点;②右洞上、下台阶开挖引起中墙内力较大变化,是中墙稳定主要监测控制点;③右洞上、下台阶开挖对支护应力的纵向影响范围约为隧道跨度的1/3和1/2;④对于浅埋大断面大跨度连拱隧道,应及早施作二衬,封闭成环,以改善结构受力。研究成果可为日后类似工程的设计、施工和研究提供有益的借鉴和参考。  相似文献   

5.
城市快速路隧道工程常因地理环境限制和城市远期发展规划需求对空间利用效率提出了极高的要求,采用双连拱形式隧道能够较好地平衡隧道结构在空间占用和建筑限界净空、净跨需求之间的矛盾。笔者主要针对市政工程中浅埋破碎围岩地质条件下特大跨度双连拱隧道施工工艺进行探讨,着重介绍施工前地理环境偏压整治、进洞开挖大管棚实施、运用监测手段实现暗挖步序优化和超前实施中隔墙浇筑与主洞台阶开挖等处理方法,对公路、市政工程中类似地质条件下的特大跨度双连拱隧道施工具有一定的参考价值。  相似文献   

6.
偏压双连拱隧道信息化施工与仿真分析   总被引:1,自引:0,他引:1  
针对湖南一高速公路偏压双连拱隧道进口段埋深浅、地质条件复杂以及隧道结构受力复杂等情况,对隧道典型断面的拱顶下沉量、中墙顶部位移和收敛位移进行现场监控量测,结合隧道开挖情况和工程地质条件分析其发展规律和产生原因,给设计和施工反馈围岩变形信息,指导现场施工。同时,对隧道的施工全过程进行有限元仿真模拟分析,把有限元计算结果与现场监测数据进行比较,结果表明二者反映围岩位移的变化规律是一致的,能够动态地指导偏压双连拱隧道全过程施工,确保施工安全。  相似文献   

7.
浅埋偏压连拱隧道非对称支护结构受力性状分析   总被引:5,自引:1,他引:4  
 针对浅埋偏压连拱隧道施工中出现的受力非对称问题,结合药水峡连拱隧道的实际情况,通过有限元分析与现场监测,分析浅埋偏压连拱隧道非对称支护结构的受力性状,采用非对称设计方法对支护结构进行优化。结果表明:对浅埋偏压连拱隧道支护结构进行非对称设计施工是可行的;连拱隧道先施工洞室的受力大于后施工洞室,此结果与隧道偏压状态关系不明显;浅埋偏压连拱隧道围岩压力分布宜按圆形洞室的径向荷载考虑。因此,在进行类似浅埋偏压连拱隧道设计施工时,应注意施工顺序,支护结构可进行非对称设计。  相似文献   

8.
由于跨度大,施工分步多,软弱地层大跨度连拱隧道支护结构受力规律难以把握,双连拱隧道设计施工难度较大。本文依托南山路浅埋大跨双连拱隧道工程,通过现场试验研究双连拱隧道施工过程初期支护和二次衬砌的受力,着重分析了围岩压力、钢架应力、初期支护与二衬接触压力、二衬钢筋应力的变化规律,结果表明:(1)由于后行洞的施工对先行洞围岩的扰动,使先行洞围岩发生多次应力重分布,使得先行洞受力比后行洞受力大且变化更为复杂;(2)拱顶和拱脚位置是整个结构受力最大的位置,仰拱封闭会使结构受力减小,因此及时使结构封闭成环有利于结构受力;(3)二衬承受了一定的围岩压力,且可以在较短时间内达到稳定受力状态,在现场二衬施做步距下,二衬不会发生屈服破坏。  相似文献   

9.
浅埋偏压连拱隧道左右洞的施工顺序和布局对围岩稳定和支护受力影响较大,为了明确浅埋偏压连拱隧道合理施工顺序,本文依托广东省南山路连拱隧道工程,结合现场监测以及数值模拟方法,研究了软弱围岩浅埋偏压连拱隧道左右正洞不同开挖布局时初期支护受力变形规律。通过建立数值模型对先开挖浅埋侧正洞和先开挖深埋侧正洞两种分案下的拱顶沉降、初期支护受力、塑性区分布、中隔墙水平侧向位移及受力等模拟结果的分析,得出:(1)不管采用哪种开挖顺序,先行洞的拱顶沉降均小于后行洞的拱顶沉降;(2)后行洞上台阶开挖后为中隔墙倾斜最为严重阶段,隧道施工完成后中隔墙向浅埋侧倾斜;(3)先行洞的初期支护整体受力较大,后行洞的初期支护受力较小;受力较大的部位一般在先行洞上台阶与中隔墙连接处以及靠近中隔墙侧拱腰处;(4)先开挖浅埋侧正洞方案较优,该方案支护受力变形较小,有利于支护结构的稳定。研究结果指导了现场工程施工,现场监测数据与计算结果较为吻合,研究结论可为类似工程提供参考。  相似文献   

10.
为了深入研究新型连拱隧道——隐式中墙复合式连拱隧道CD法施工过程中,围岩变形和初支结构的受力特征,该文依托重庆沙坪坝站铁路综合交通枢纽工程,通过模型试验再现了隧道施工过程,分析了不同开挖步序下围岩的变形以及初支结构的受力变化规律。结果表明:(1)模型试验验证了数值模拟中对施工步序优化后围岩的沉降规律,实测沉降数值与数值模拟结果相符合;(2)双连拱隧道初支结构在加载破坏时,中墙上方的变截面处最容易开裂,并迅速形成通缝,验证了需对中墙采取优化措施的必要性;(3)双连拱隧道初支结构加载时,其内力值均较小,与数值模拟结果基本吻合,满足设计要求。  相似文献   

11.
朱中全 《土工基础》2014,(5):102-105
隧道超前地质预报与监控量测是新奥法施工不可缺少的一部分,能够准确预报掌子面前方一定距离内围岩质量的好坏,并实时通过围岩变形的监测与分析检验围岩是否稳定及支护是否合理。结合杉溪隧道工程实例,通过对隧道浅埋段的超前地质预报和监控量测数据进行分析研究,得出隧道浅埋段围岩变形速率受施工干扰影响较大,钢支撑内力及围岩压力与围岩断面变形量变化趋势基本一致。通过研究隧道浅埋段的围岩变形规律和支护结构受力特征,可为以后类似项目积累经验,提供施工依据。  相似文献   

12.
软岩小净距隧道施工力学效应研究   总被引:12,自引:0,他引:12  
以软岩小净距隧道在不同开挖方式下达到稳定后围岩和复合衬砌的力学效应为对象,重点分析不同开挖方式下锚杆、喷射混凝土层和二次衬砌的受力特点,考察不同净距对中夹岩柱塑性区的影响.结果表明:施工小净距隧道应慎重选择后继施工隧道的开挖方式;后继隧道施工的开挖方式直接对先行既有隧道锚杆、喷射混凝土层和二次衬砌应力状态产生很大影响;中夹岩柱塑性区大小与净距紧密相关,同时,隧道埋深和围岩类别也是影响塑性区大小的重要因素.  相似文献   

13.
本文结合怀新高速公路的界牌坳隧道的实际情况,利用现场荷载试验的测点位移,通过有限元反演理论的模拟退火法反演计算隧道破碎带围岩基本参数.将反分析计算得到的隧道围岩参数输入界牌坳隧道二维弹塑有限元计算模型,对隧道的施工过程进行数值模拟,分析了采用三导洞法施工时围岩和中墙的受力变形规律,计算结果表明,两主洞拱部开挖是连拱隧道施工过程中两个比较关键的施工步;两主洞拱顶及右洞左拱肩位置的围岩出现了较大的位移或应变而有可能引起隧道塌方或破坏;浅埋偏压连拱隧道受山体偏压和不对称施工的影响,中隔墙在整个施工过程中基本处于偏心受压状态.  相似文献   

14.
并设小净距隧道中岩墙力学特征及加固措施研究   总被引:11,自引:0,他引:11  
姚勇  田志宇 《工业建筑》2006,36(4):57-60,84
采用二维弹性、弹塑性数值计算方法,对Ⅲ~Ⅴ级围岩条件下平行布设的双洞隧道中夹岩墙受力、变形特点随隧道间距变化的情况进行了研究。研究表明,对于两隧道间距较小的小净距隧道,中夹岩墙的受力、变形极为不利,是设计、施工和监控量测的关键部位。同时,研究了不同隧道埋深以及不同岩柱加固措施对小净距隧道中夹岩墙受力、变形特点的影响,为小净距隧道的支护设计、开挖方式选取、岩墙加固方式选取以及现场监控量测方案制定等提供参考。  相似文献   

15.
Damage or overbreak not only endangers safety of structure but also increases cost of construction and time of completion. Drilling and blasting being cost-effective for excavation of any underground structure should strictly adhere into specialized controlled blasting pattern to minimize the unacceptable impact on peripheral in situ rock mass. The paper reveals that in addition to geo-technical properties of rock mass, in situ stress condition plays an important role in enhancing the magnitude of overbreak. Implementation of same blast pattern throughout the length of tunnel results into different magnitudes of overbreak and the magnitude increases in highly stressed zone. Furthermore, implementation of same controlled perimeter blast pattern along the tunnel cross-section may result into different magnitudes of overbreak. Different magnitude of overbreak along the tunnel cross-section i.e., in left and right wall and crown has been observed even with implementation of same controlled blast pattern throughout the tunnel cross-section. Feasibility and compatibility of drilling equipment with respect to tunnel cross-section also adds to the quality and magnitude of overbreak. Undersize drilling equipment leads to angular drilling on either walls or crown and enhances the magnitude of overbreak. The paper with the help of statistical and graphical analysis revealed that blast pattern for peripheral rock mass should consider geo-technical properties and in situ stress condition of rock mass to minimize the magnitude of overbreak. The authors also emphasized that to contain magnitude of overbreak within allowable limit; the implemented blast pattern should be different for different sections viz., right wall, left wall and crown of tunnel. Furthermore, in poor rock mass condition or in highly stressed zone, drivage of tunnel should be carried out in small sections and in different phases until the excavation reaches the required excavation profile in that area. Excavation in small sections and in different phases would lead to proper excavated profile and minimize overbreak and damage of peripheral rock mass.  相似文献   

16.
王舒 《山西建筑》2012,(31):177-179
针对浅埋偏压连拱隧道,采用中导洞施工方法,对浅埋偏压连拱隧道的两种不同施工顺序(先挖深侧后挖浅侧或先挖浅侧再挖深侧)进行数值模拟,分析两种不同施工顺序下围岩应力、位移,中墙应力、位移及初期支护内力、位移的变化值,得出“先浅后深”施TII~I序优于“先深后浅”施工顺序。  相似文献   

17.
朱大军  杜鹏  梁美丽 《山西建筑》2007,33(29):315-316
结合我国关于公路隧道围岩分类的相关规定,对国内外采用的两种不同的隧道围岩分级方法进行了系统的分析介绍,并分析了各自的优缺点,提出了适合我国公路隧道的围岩分级方法,从而为公路隧道的设计、施工和养护服务。  相似文献   

18.
以深圳市东部过境高速公路连接线工程为背景,针对谷对岭“Y”形喇叭口大断面分岔隧道,通过室内地质力学模型试验和数值模拟等手段,对大断面隧道围岩的渐进性破坏过程、岩体内部变形和应力变化规律进行了研究。研究结果表明:软弱隧道围岩的破坏是始自拱腰以下的岩体,而后自拱腰向上继续扩展成拱,为此必须要对拱腰以下岩体施作锁脚锚杆,从而制止岩体的初始剪切破坏;当采取左右导洞分块开挖时,后开挖导洞会引起既有洞室围岩的破坏,因此需要对导洞之间的隔墙进行加固;拱顶上方0.95B(B为隧道跨度)范围内的岩体变形受到隧洞开挖影响,但最终塌落成拱的高度为0.55B;隧道开挖后,拱顶上方岩体应力升高区主要集中在0.4B~0.95B的范围内。  相似文献   

19.
软岩小净距隧道中夹岩柱分区及加固方法研究   总被引:1,自引:0,他引:1  
中夹岩柱是软岩小净距隧道围岩稳定控制的关键部位。结合具体工程,提出对中夹岩柱进行区域划分,针对软弱围岩,采用二维有限元计算方法,对中夹岩柱预应力锚杆及注浆加固、中岩墙预应力锚杆加固和中夹岩柱不同加固组合方式进行了研究。数值计算结果表明:在中夹岩柱各区加固中,中岩墙加固是最重要的,对其进行加固,可以减小隧道变形,提高围岩稳定性,改善支护结构的力学状态;各种加固方法对于不同级别的围岩其加固效果不同,在软弱围岩中,注浆加固比对拉锚杆或预应力锚杆效果更显著;加固参数应根据围岩级别、净距大小、中夹岩柱加固组合方式等综合确定,围岩越差,净距越小,则注浆参数应提高越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号