首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
RhoA has been identified as an important regulator of cell proliferation. We recently showed that the Ras/RhoA pathway regulates the degradation of p27(Kip) and the progression of Chinese hamster embryo fibroblasts (IIC9 cells) through G1 into S phase (Weber, J. D., Hu, W., Jefcoat, S. C., Raben, D. M., and Baldassare, J. J. (1997) J. Biol. Chem. 272, 32966-32971). In this report, we have demonstrated that, in IIC9 cells, RhoA regulates cyclin E/CDK2 activity, which is required for p27(Kip) degradation. As previously shown in several fibroblasts cell lines, expression of dominant-negative CDK2 in IIC9 cells blocked serum-induced cyclin E/CDK2 activity and p27(Kip) degradation. In the absence of serum, expression of constitutively active RhoA(63) resulted in significant stimulation of cyclin E/CDK2 activity and degradation of p27(Kip). Cotransfection of dominant-negative CDK2 and RhoA(63) inhibited RhoA(63)-induced cyclin E/CDK2 activity and p27(Kip) degradation. In addition, expression of dominant-negative RhoA blocked serum-induced cyclin E/CDK2 activity and p27(Kip) degradation. Finally, expression of catalytically active cyclin E/CDK2 rescued the effect of expression of dominant-negative RhoA. Taken together, these data show that RhoA regulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity.  相似文献   

2.
The passage of mammalian cells through the restriction point into the S phase of the cell cycle is regulated by the activities of Cdk4 and Cdk6 complexed with the D-type cyclins and by cyclin E/Cdk2. The activities of these holoenzymes are constrained by CDK inhibitory proteins. The importance of the restriction point is illustrated by its deregulation in many tumour cells and upon infection with DNA tumour viruses. Here we describe the properties of cyclins encoded by two herpesviruses, herpesvirus saimiri (HVS) which can transform blood lymphocytes and induce malignancies of lymphoid origin in New World primates, and human herpesvirus 8 (HHV8) implicated as a causative agent of Kaposi's sarcoma and body cavity lymphomas. Both viral cyclins form active kinase complexes with Cdk6 that are resistant to inhibition by the CDK inhibitors p16(Ink4a), p21Cip1 and p27Kip1. Furthermore, ectopic expression of a viral cyclin prevents G1 arrest imposed by each inhibitor and stimulates cell-cycle progression in quiescent fibroblasts. These results suggest a new mechanism for deregulation of the cell cycle and indicate that the viral cyclins may contribute to the oncogenic nature of these viruses.  相似文献   

3.
We have previously shown that there were differential and dramatic decreases of cyclin and cyclin-dependent kinase (CDK) activities in cardiomyocytes during the neonatal period. The activity of CDKs control cell cycle progression, and this activity is regulated positively and negatively by association of CDKs with cyclins and cyclin-dependent kinase inhibitors (CKIs), respectively. While the INK family (p15(INK4B)/p16(INK4A)/p18(INK4C)/p19(INK4D)) of CKIs is not detectable in hearts, the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs is detectable in most organs including the heart. Differential and dramatic changes of the KIP/CIP family (p21(CIP1), p27(KIP1) and p57(KIP2)) of CKIs were detected in rat hearts during development. The mRNA and protein levels of p21(CIP1) and p57(KIP2) were readily detectable in hearts at gestational and early postnatal periods and decreased thereafter. The mRNA levels of p27(KIP1) in ventricles were high during the gestational period, and did not change until day 30 postnatal, then were decreased slightly in 90-day-old rats. The protein levels of p27(KIP1) increased significantly in the early postnatal period, then were expressed persistently, although levels decreased slightly in the adult period. However, protein levels of p27(KIP1) in atria did not change during development. Variable immuno-staining patterns of p27(KIP1) were observed at different periods of development and in various locations in myocardium. During the gestational period, approximately 35-50% of myocardial cells in the cardiac wall were p27(KIP1) immuno-positive and were distributed diffusely. These p27(KIP1) immunopositive cells increased predominantly in endocardial and mid-portion areas of ventricular myocardium at the early postnatal period. This heterogenous pattern of p27(KIP1) protein expression persisted to adult hearts though the percentage of p27(KIP1) immuno-positive cells decreased slightly. High magnification revealed that more than 50% of adult cardiomyocytes were p27(KIP1) immuno-positive and that p27(KIP1) was located solely in nuclei. These results indicate that p27(KIP1) may be an important inhibitor of CDK activities in cardiomyocytes during early postnatal development and may block the re-entrance of adult cardiomyocytes into the cell cycle after injury.  相似文献   

4.
During recent years, there has been an extensive research focus in the area of cell-cycle control in eukaryotes and the relationship that exists between cell proliferation and cancer. The eukaryotic cell-cycle is governed by signal transduction pathways mediated by complexes of cyclin dependent kinases (CDK) and their partner cyclin proteins. This study was performed to identify differences in cell-cycle control protein expression following physical and chemical stimuli of hepatic cell growth. Protein levels of cell cycle mediators, cyclin dependent kinases (CDK 1,2,4,5), cyclin proteins (A,B,D1-D3 and E), proliferating cell nuclear antigen (PCNA), tumor suppressor proteins (p53 and Rb), and CDK inhibitory proteins (p16Ink4, p21Waf1 and p27Kip1) were examined in F344 rats following 70% partial hepatectomy or a single dose of WY14,643 over 96- and 48-h time courses, respectively. CDK1 (p34cdc2) and PCNA protein concentrations, quantified by ELISA, were significantly increased beginning at the 24-h time point and maximal at 48 h (6.9- and 3.7-fold for partial hepatectomy and 4.2- and 3.3-fold for WY14,643, respectively). Differential effects were observed with the G1 cell-cycle mediators CDK4, CDK5, and cyclin D3, p21Waf1 and p27Kip1 CDK inhibitory protein concentrations rose in accordance with the induction of DNA synthesis and histone H1 kinase activity. In addition, there were dramatic differences in p53 protein expression patterns following partial hepatectomy versus WY14,643 dosing. Because non-genotoxic hepatocarcinogens are known to induce cellular proliferation, data generated from this study may aid in elucidating the specific hepatocarcinogenic signal transduction pathways stimulated by non-genotoxic carcinogens.  相似文献   

5.
We report here the cloning and characterization of human and mouse cyclin E2, which define a new subfamily within the vertebrate E-type cyclins, while all previously identified family-members belong to the cyclin El subfamily. Cyclin E2/CKD2 and cyclin E/CDK2 complexes phosphorylate histone H1 in vitro with similar specific activities and both are inhibited by p27Kip1. Cyclin E2 mRNA levels in human cells oscillate throughout the cell cycle and peak at the G1/S boundary, in parallel with the cyclin E mRNA. In cells, cyclin E2 is complexed with CDK2, p27 and p21. Like cyclin E, cyclin E2 is an unstable protein in vivo and is stabilized by proteasome inhibitors. Cyclin E2-associated kinase activity rises in late G1 and peaks very close to cyclin E activity. In two malignantly transformed cell lines, cyclin E2 activity is sustained throughout S phase, while cyclin E activity has already declined and cyclin A activity is only beginning to rise. We speculate that cyclin E2 is not simply redundant with cyclin E, but may regulate distinct rate-limiting pathway(s) in G1-S control.  相似文献   

6.
7.
8.
Depletion of guanine nucleotide pools after inhibition of inosine monophosphate dehydrogenase (IMPDH) potently inhibits DNA synthesis by arresting cells in G1 and has been shown to induce the differentiation of cultured myeloid and erythroid cell lines, as well as chronic granulocytic leukemic cells after blast transformation. Inhibitors of IMPDH are also highly effective as immunosuppressive agents. The mechanism underlying these pleiotropic effects of depletion of guanine nucleotides is unknown. We have examined the effects of mycophenolic acid (MPA), a potent IMPDH inhibitor, on the cell cycle progression of activated normal human T lymphocytes. MPA treatment resulted in the inhibition of pRb phosphorylation and cell entry into S phase. The expression of cyclin D3, a major component of the cyclin-dependent kinase (CDK) activity required for pRb phosphorylation, was completely abrogated by MPA treatment of T cells activated by interleukin-2 (IL-2) and leucoagglutinin (PHA-L), whereas the expression of cyclin D2, CDK6, and CDK4 was more mildly attenuated. The direct kinase activity of a complex immunoprecipitated with anti-CDK6 antibody was also inhibited. In addition, MPA prevented the IL-2-induced elimination of p27(Kip1), a CDK inhibitor, and resulted in the retention of high levels of p27(Kip1) in IL-2/PHA-L-treated T cells bound to CDK2. These results indicate that inhibition of the de novo synthesis of guanine nucleotides blocks the transition of normal peripheral blood T lymphocytes from G0 to S phase in early- to mid-G1 and that this cell cycle arrest results from inhibition of the induction of cyclin D/CDK6 kinase and the elimination of p27(Kip1) inhibitory activity.  相似文献   

9.
The molecular mechanisms underlying androgen-regulated cancer growth and the frequent development of refractoriness to endocrine therapy remain unknown. In this study functional and quantitative alterations in cell cycle regulators after androgen depletion were examined in androgen-dependent mouse mammary carcinoma cells (SC-3) as a model system to clarify the initial response of cancer cells to anti-androgen therapy. FACS analysis of SC-3 cells cultured with or without 10(-7) M testosterone revealed that suppression of cell growth after hormone withdrawal was due to GI arrest. Although cyclin D1/Cdk4 activity decreased along with a reduced level of cyclin D1 protein, this was a later event (48-72 h) than the G1 arrest (24 h). Taken together with the results that constitutive expression of cyclin D1 in SC-3 cells did not overcome the growth suppression following androgen depletion, the existence of an alternative pathway(s) causing G1 arrest was suggested. Cyclin E/Cdk2 and cyclin A/Cdk2 activities decreased significantly at 24 h without apparent changes in the amounts of Cdk2, cyclin E or cyclin A. Among various Cdk inhibitors (CKIs) examined, p27Kip1 was upregulated at both mRNA and protein levels at 24 h after androgen depletion. In addition, immunoprecipitation-Western analysis showed that the amount of p27Kip1 associated with Cdk2 complexes increased as early as 24 h. These results suggest that p27Kip1 CKI is a critical target in the initial response of cancer cells to androgen depletion and plays a key role in Cdk2 inactivation through association with the kinase complex, leading to cell cycle arrest.  相似文献   

10.
Onconase is a 12 kDa protein homologous to pancreatic RNase A isolated from amphibian oocytes which shows cytostatic and cytotoxic activity in vitro, inhibits growth of tumors in mice and is in phase III clinical trials. The present study was aimed to reveal mechanisms by which onconase perturbs the cell cycle progression. Human histiocytic lymphoma U937 cells were treated with onconase and expression of cyclins D3 and E, as well as of the cyclin-dependent kinase inhibitors (CKIs) p16INK4A, p21WAF1/CIP1 and p27KIP1 (all detected immunocytochemically) was measured by multiparameter flow cytometry, in relation to the cell cycle position. Also monitored was the status of phosphorylation of retinoblastoma protein (pRb) by a novel method utilizing mAb which specifically detects underphosphorylated pRb in individual cells. Cell incubation with 170 nM onconase for 24 h and longer led to their arrest in G1 which was accompanied by a decrease in expression of cyclin D3, no change in cyclin E, and enhanced expression of all three CKIs. pRb was underphosphorylated in the onconase arrested G1 cells but was phosphorylated in the cells that were still progressing through S and G2/M in the presence of onconase. The cytostatic effect of onconase thus appears to be mediated by downregulation of cyclin D3 combined with upregulation of p27KIP1, p16INK4A and p21WAF1/CIP1, the events which may prevent phosphorylation of pRb during G0/1 and result in cell arrest at the restriction point controlled by Cdk4/6 and D type cyclins.  相似文献   

11.
DNA tumour viruses have evolved a number of mechanisms by which they deregulate normal cellular growth control. We have recently described the properties of a cyclin encoded by human herpesvirus 8 (also known as Kaposi's sarcoma-associated herpesvirus) which is able to resist the actions of p16(Ink4a), p21(Cip1) and p27(Kip1) cdk inhibitors. Here we investigate the mechanism involved in the subversion of a G1 blockade imposed by overexpression of p27(Kip1). We demonstrate that binding of K cyclin to cdk6 expands the substrate repertoire of this cdk to include a number of substrates phosphorylated by cyclin-cdk2 complexes but not cyclin D1-cdk6. Included amongst these substrates is p27(Kip1) which is phosphorylated on Thr187. Expression of K cyclin in mammalian cells leads to p27(Kip1) downregulation, this being consistent with previous studies indicating that phosphorylation of p27(Kip1) on Thr187 triggers its downregulation. K cyclin expression is not able to prevent a G1 arrest imposed by p27(Kip1) in which Thr187 is mutated to non-phosphorylatable Ala. These results imply that K cyclin is able to bypass a p27(Kip1)-imposed G1 arrest by facilitating phosphorylation and downregulation of p27(Kip1) to enable activation of endogenous cyclin-cdk2 complexes. The extension of the substrate repertoire of cdk6 by K cyclin is likely to contribute to the deregulation of cellular growth by this herpesvirus-encoded cyclin.  相似文献   

12.
The Kaposi's sarcoma-associated human herpesvirus 8 (KSHV/HHV8) encodes a protein similar to cellular cyclins. This cyclin is most closely related to cellular D-type cyclins, but biochemically it behaves atypically in various respects. Complexes formed between the viral cyclin and the cyclin-dependent kinase subunit, cdk6, can phosphorylate a wider range of substrates and are resistant to cdk inhibitory proteins. We show here that the KSHV-cyclin-cdk6 complex phosphorylates p27(Kip) on a C-terminal threonine that is implicated in destabilization of this cdk inhibitor. Expression of the viral cyclin in tissue culture cells overcomes a cell cycle block by p27(Kip). However, full cell-cycle transit of these cells appears to depend on C-terminal phosphorylation of p27(Kip) and seems to involve transactivation of other cellular cyclin-dependent kinases. A p27(Kip)-phosphorylating cdk6 complex exists in cell lines derived from primary effusion lymphoma and in Kaposi's sarcoma, this indicating that virally induced p27(Kip) degradation may occur in KSHV-associated tumours.  相似文献   

13.
Anti-idiotype (anti-Id) antibody can induce tumor dormancy in a murine B lymphoma, BCL1, by its ability to induce cell cycle arrest and apoptosis (negative signaling). In human B lymphoma, there is accumulating evidence that the antitumor effect of anti-Id or several other B cell-reactive antibodies relates to their ability to act as agonists rather than conventional effector antibodies. In this study, we sought to elucidate the role of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors in anti-IgM-induced cell cycle arrest to better understand the mechanisms underlying cancer dormancy. To accomplish this, we have performed in vitro studies with a human lymphoma cell line (Daudi) because its response to anti-Id (or anti-IgM) is similar to that of a BCL1 cell line, more reagents are available, and the results would be particularly pertinent to therapy of human B cell lymphomas. Our results show that cross-linking of membrane IgM on Daudi cells induces an arrest late in G1 and prevents pRb from becoming phosphorylated. The G1 arrest is correlated with an induction of the CDK inhibitor p21 and reduced CDK2 activity, although the level of CDK2 protein was not changed. Coprecipitation of CDK2 with p21 in anti-IgM-treated cells and the unchanged level of cyclin E suggest that p21 is responsible for the reduction of CDK2 activity and therefore blockade of the cell cycle. The induction of p21 was not accompanied by changes in p53 levels. As a result of the G1 block, cyclin A levels sharply declined by 24 h after anti-IgM treatment. There was no evidence for involvement of CDK4 or CDK6 in the blockade. These results provide evidence that membrane IgM cross-linking on Daudi cells induces expression of p21 and a subsequent inhibition of the cyclin E-CDK2 kinase complex resulting in a block to pRb phosphorylation and cell cycle arrest late in G1.  相似文献   

14.
To explore the regulation and function of D-type cyclins in breast cancer cells, the mouse mammary hyperplastic epithelial cell line TM2H was treated with 5 mM hexamethylenebisacetamide (HMBA), a polar differentiation factor. The resulting growth-inhibitory effect of HMBA was completely reversible and was analyzed in terms of percent cells in G1; association of D-type cyclins with cyclin-dependent kinase (cdk) 4 and cdk6; G1 kinase activity; association of retinoblastoma protein (pRb) and phosphorylated pRb with D-type cyclins; and association of p16INK4a, p15INK4b, and p27Kip1 with cdk4 and cdk6. Synchronized TM2H cells were examined at 0, 3, 5, 9, 12, and 24 h after exposure to 5 mM HMBA. Inhibition of DNA synthesis, as measured by thymidine uptake, was first observed at 5 h (40%) and peaked at 24 h (80%). Flow cytometry at 9 h showed treated cells to be in G1 arrest. Western blot analysis showed weakly detectable cyclin D1 but readily detectable cyclin D2 and D3 proteins at 0 h; thereafter, cyclin D2 and D3 protein levels remained higher while cyclin D1 levels declined significantly in treated versus untreated cells. By 5 h (early G1), HMBA had markedly inhibited cdk4 and cdk6 kinase activity (67% and 75%, respectively) in treated versus untreated cells. By 9 and 12 h, pRb levels had increased 3.4-fold in treated versus untreated cells. At 5 h, cyclin D-associated pRb was totally hypophosphorylated in treated cells and hyperphosphorylated in untreated cells. The levels of pRb associated with cyclin D2 and D3 increased 2.89-fold and 4.6-fold, respectively, in treated versus untreated cells. At 5 h, treated cells showed a fivefold increase in cdk4-associated p27Kip1 and, at 9 h, a fourfold increase in cdk6-associated p27Kip1 over control levels. In confirmation of these data, HMBA was found to inhibit the growth of Rb-positive Du/145Rb cells but not their Rb-negative parental Du/145 cells. The data suggest that HMBA-induced growth inhibition is due to multifactorial mechanisms involving decreases in total cyclin D1 and inhibition of cdk4 and cdk6 kinase activities through elevation of levels of cdk4- and cdk6-associated p27Kip1 and concomitant increases in hypophosphorylated pRb and stable cyclin D2/pRb and cyclin D3/pRb complexes that help maintain pRb in a functional state.  相似文献   

15.
There is an increasing interest in identifying potent cancer preventive and therapeutic agents against breast cancer. Silymarin, a flavonoid antioxidant isolated from milk thistle, exerts exceptionally high to complete anticarcinogenic effects in tumorigenesis models of epithelial origin. In this study, we investigated the anticarcinogenic effect of silymarin and associated molecular mechanisms, using human breast carcinoma cells MDA-MB 468. Silymarin treatment resulted in a significantly high to complete inhibition of both anchorage-dependent and anchorage-independent cell growth in a dose- and time-dependent manner. The inhibitory effects of silymarin on cell growth and proliferation were associated with a G1 arrest in cell cycle progression concomitant with an induction of up to 19-fold in the protein expression of cyclin-dependent kinase (CDK) inhibitor Cip1/p21. Following silymarin treatment of cells, an incremental binding of Cip1/p21 with CDK2 and CDK6 paralleled a significant decrease in CDK2-, CDK6-, cyclin D1-, and cyclin E-associated kinase activity with no change in CDK2 and CDK6 expression but a decrease in G1 cyclins D1 and E. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against breast cancer and that this effect possibly involves an induction of Cip1/p21 by silymarin, which inhibits the threshold kinase activities of CDKs and associated cyclins, leading to a G1 arrest in cell cycle progression.  相似文献   

16.
Prostate cancer (PCA) is the most common nonskin malignancy and the second leading cause of cancer deaths in United States males. One practical and translational approach to control PCA is to define a mechanism-based anticarcinogenic agent(s). Recently, we showed that silymarin, a flavonoid antioxidant isolated from milk thistle, possesses exceptionally high to complete protective effects against experimentally induced tumorigenesis. Because the epidermal growth factor receptor (erbB1) and other members of the erbB family have been shown to play important roles in human PCA, efforts should be directed to identify inhibitors of this pathway for PCA intervention. In this study, we assessed whether silymarin inhibits erbB1 activation and associated downstream events and modulates cell cycle regulatory proteins and progression, leading to growth inhibition of human prostate carcinoma DU145 cells. Treatment of serum-starved cells with silymarin resulted in a significant inhibition of transforming growth factor alpha-mediated activation of erbB1 but no change in its protein levels. Silymarin treatment of cells also resulted in a significant decrease in tyrosine phosphorylation of an immediate downstream target of erbB1, the adapter protein SHC, together with a decrease in its binding to erbB1. In the studies analyzing cell cycle regulatory molecules, silymarin treatment of cells also resulted in a significant induction of cyclin-dependent kinase inhibitors (CDKIs) Cip1/p21 and Kip1/p27, concomitant with a significant decrease in CDK4 expression, but no change in the levels of CDK2 and CDK6 and their associated cyclins E and D1, respectively. Cells treated with silymarin also showed an increased binding of CDKIs with CDKs, together with a marked decrease in the kinase activity of CDKs and associated cyclins. In additional studies, treatment of cells grown in 10% serum with anti-epidermal growth factor receptor monoclonal antibody clone 225 or different doses of silymarin also resulted in significant inhibition of constitutive tyrosine phosphorylation of both erbB1 and SHC but no change in their protein levels. Furthermore, whereas silymarin treatment resulted in a significant increase in the protein levels of both Cip1/p21 and Kip1/p27, monoclonal antibody 225 showed an increase only in Kip1/p27. These findings suggest that silymarin also inhibits constitutive activation of erbB1 and that the observed effect of silymarin on an increase in CDKI protein levels is mediated via inhibition of erbB1 activation only in the case of Kip1/p27; however, additional pathways independent of inhibition of erbB1 activation are possibly responsible for the silymarin-caused increase in Cip1/p21 in DU145 cells. In other studies, silymarin treatment also induced a G1 arrest in the cell cycle progression of DU145 cells and resulted in a highly significant to complete inhibition of both anchorage-dependent and anchorage-independent growth of DU145 cells in a dose- and time-dependent manner. Taken together, these results suggest that silymarin may exert a strong anticarcinogenic effect against PCA and that this effect is likely to involve impairment of erbB1-SHC-mediated signaling pathway, induction of CDKIs, and a resultant G1 arrest.  相似文献   

17.
18.
Recent studies have shown that decreased expression of p27Kip1 is associated with high grade tumors and an unfavorable prognosis in several types of human cancer. To clarify the role of p27Kip1 in colon cancer, we have overexpressed this protein in the HT29 colon cancer cell line. The derivatives displayed an increase in the p27Kip1 protein in cyclin E/CDK2 immunoprecipitates and a decrease in cyclin E-associated kinase activity when compared to vector control clones, providing evidence that the overexpressed protein was functional. Clones with a high level of p27Kip1 displayed partial growth inhibition in monolayer culture and a decrease in plating efficiency, even though they expressed increased levels of the cyclin D1 protein. Using alkaline phosphatase expression as a marker, we found that the p27Kip1 overexpressor clones displayed a 2-3-fold increase in sensitivity to induction of differentiation by 2 mM sodium butyrate. In contrast to these results, derivatives of HT29 cells that stably overexpressed p21Cip1/Waf1 displayed decreased sensitivity to the induction of differentiation. These findings may explain why decreased levels of p27Kip1 in certain human cancers is associated with high grade (poorly differentiated) tumors, and suggest that strategies that increase the level of p27Kip1 may be useful in cancer therapy.  相似文献   

19.
IL-4 is a pleiotrophic cytokine that has been shown to affect cells of the central nervous system. We have demonstrated that IL-4 inhibits DNA synthesis and proliferation in human astroglia expressing IL-4 receptors. In this study, we sought to identify mechanisms that could account for the antimitogenic effects of IL-4. Epidermal growth factor (EGF)-stimulated human astroglia were arrested in G1 phase by IL-4, even though IL-4 stimulated levels of the G1 cyclins, D1 and E. Histone H1 kinase activity of cdk2 immunoprecipitates, however, was sharply reduced by IL-4; impairment of kinase activity was also evident in cyclin E immunoprecipitates, which contained evidence of hypophosphorylated (inactive) cdk2 product. Reduced cyclin E-associated cdk2 activity was not due to impaired cyclin-dependent kinase-activating kinase (CAK) activity, which was unaffected by IL-4. Inactive cyclin E/cdk2 complexes from IL-4 + EGF-treated cells contained, however, strikingly elevated p27Kip1 cdk inhibitor. Elevated p27 was also detectable in whole cell lysates after 24 and 48 h of IL-4 treatment; by 72 h, p27 was no longer elevated. Pretreatment with antisense but not mismatch p27 oligonucleotides attenuated the inhibitory effects of IL-4 on DNA synthesis and histone kinase activity of cyclin E/cdk2 complexes. Antisense p27 also abrogated IL-4-mediated elevation of p27 in whole cell lysates and cyclin E/cdk2 complexes. These findings demonstrate that IL-4 regulates the cell cycle machinery of astroglial cells via a p27Kip1 braking mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号