首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵欣 《黑龙江电力》2009,31(3):229-230,233
阐述了锅炉补给水除盐系统混床阴、阳树脂分离和混合状况对出水水质的影响,及提高混床出水水质的操作注意事项。  相似文献   

2.
一、概述黄石发电厂补给水处理除盐系统,自1975年7月投运,至今已有10年多了。阳床、阴床和混床所使用的树脂,为西安电力树脂厂生产的001×7强酸阳树脂和201×7强碱阴树脂。水源为长江水,1985年3月测定其水质情况如表1。该厂的补给水处理系统为:长江水→快速澄清器→三层滤料过滤器→H型磺化煤→阳床→除碳器→阴床→除盐水箱→混床。  相似文献   

3.
1987.11月,我厂投入一套化学除盐水处理设备,设计制水系统为:生水——阳床——除CO_2器——中间水箱——阴床——混床——除盐水箱——除盐水泵(管道中加氨后)——主厂房.设计最终送出水量为400t/h,目前设计送出水量为230t/h.阳床直径为φ3228×12mm,逆流再生,树脂有效高度为2000mm,树脂型号为001×7.阴床直径为φ3228×12mm,逆流再生,树脂有效高度为2000mm,树脂型号为201×7.混床直径为φ2520×10mm,阳树脂高度为500mm,阴树脂高度为1000mm,其树脂型号分别为001×7和201×7.除CO_2器直径为φ2212×6mm,鼓风机式,内部填料为多面空心球,填料高度为2500mm.  相似文献   

4.
滦河发电厂化学水处理方式为一级除盐加混床,有φb200m/m阳床两台,φ1010m/m除碳器两台,φ2000m/m阴床两台,φ1500m/m混床两台。自一九七七年底至一九七八年六月份,相继将两台阳固定床和两台阴固定床改为浮床。浮床综合了逆流再生与移动床的特点,逆流再生即再生时,再生液流向与运行时水的流向相反,移动床即运行时水流自下而上的将树脂托起,使树脂成床运行。同时床体  相似文献   

5.
本文从一般凝结水除盐装置存在的问题入手,谈及氨型混床处理凝结水装置的优越性。一般凝结水除盐装置运行周期为5—7天,而氨型混床可以运行一个月以上,再生次数,酸、碱再生药品剂量、用水量、废液排放量等都可以减少五倍多.该文谈到氨型混床离子交换树脂分离的重要性,树脂分离的好坏是氨型混床成败的关键,所以论文主要叙述离子交换树脂的分离方法—《Seprex 方法》。该方法是美国Ecodyne 社氨型凝结水除盐装置的再生方法。用该方法阴阳离子交换树脂几乎可以完全分离,分离好的原因是用阴阳离子交换树脂在浓 NaOH 溶液中比重差大的特点进行的,  相似文献   

6.
混床是制取纯水的一个重要单元设备。但是,当常规混床体内再生时,由于阳、阴树脂分离不彻底。在界面附近互有夹杂,使部分阳树脂与碱液接触或部分阴树脂与酸液接触,形成R—Na和R—Cl型树脂。这就是所谓混床的交叉污染。结果造成混床离子漏过量增大,影响出水水质,同时也缩短了混床运行周期。为了克服上述问题,国外应用了一种新工艺,就是在普通强酸、强碱树脂组成的混床中加装惰性树脂,分层时在阴、阳树脂层间形成惰性树脂隔离层,防止再生时交叉污染的发生,故名三层床。为了在我国应用三层床工艺,争光化工厂研制出三层床用的树脂并委托我所进行应用试验。首先我们将争光厂生产的树脂与国外Duolite树脂(三层床用)进行了物理性能对比试验。此外,还测定了树脂的交换容量。现将试验结果分述如下。  相似文献   

7.
概述以一种大孔型弱碱阴树脂为基础的新的混床离子交换除盐装置已有了发展,而且是运行效能高、费用低的除盐装置;可设计用于常温和高温时的水处理和污水处理系系统。再生剂废液的处理问题减至最小。这新的混床装置消除了钠的泄漏及硫酸钙沉积问题,这是离子交换中长期遇到的困难。这种大孔型离子交换树脂装置制备的水中已消除了最后的微量胶质和溶介固形物。  相似文献   

8.
目前各电厂都是采用离子交换树脂除盐制水。由于强阳和强阴树脂较贵,故需要我们在使用时要充分地加以利用,以杜绝浪费。在树脂使用中常遇到混床用过的强阳、强阴混合树脂,或因包装不好和保存不当,把强阳和强阴树脂混到一块了,只有把两种混合树脂分离开后,才能分别装入阴床和阳  相似文献   

9.
滦河电厂2×300 MW机组凝结水100%通过精处理,精处理再生方式为高塔法,铵化运行。在机组调试过程中,发现树脂分离塔传阳树脂时阳树脂中夹杂较多阴树脂,导致混床再生效果不好,出水水质不达标,无法实现铵化运行。为此,探讨问题形成的原因,对各种解决方案进行比较,最终采用取消树脂分离塔上进水,只由下部进水,同时开分离塔空气阀的方法运行。运行方式改进后,杜绝了阳树脂中夹杂阴树脂现象,保证了树脂的良好再生,提高了混床运行周期,改善了出水水质,节约了再生用酸碱,为凝结水精处理的安全高效及铵化运行创造了良好的条件。  相似文献   

10.
徐伶 《宁夏电力》2006,(1):64-66
中宁发电有限责任公司的凝结水精处理系统设备采用的是独特的双速水帽布水器、锥体分离再生和混床气水卸树脂的设备,这种设备既减少树脂交叉污染,又保证了将99.9%左右的树脂卸到再生分离罐中。在输送阳树脂过程中,采用“电导率差”和“光电色差”同时检测。检测阳树脂输送终点信号,达到了行之有效的阴、阳树脂监控的目的。  相似文献   

11.
我国凝结水处理混床运行可能遇到的特殊问题   总被引:9,自引:0,他引:9  
张澄信  陈龙 《热力发电》2001,30(1):8-12,14
我国许多电厂再生凝结水混床阴树脂仍采用氯化钠含量高的碱,并习惯采用盐酸做阳树脂的再生剂,这会使再生后的阴树脂中C1型含量过高,并在混床树脂混合不均匀(即上层阴树脂偏多而下层阳树脂偏多)时造成凝结水处理混床运行周期短、出水水质差、甚至伴有炉水pH值下降等问题。针对这一情况,提出了防范措施。  相似文献   

12.
施文焕 《电站辅机》1993,(3):3-5,25
1.引言本凝结水精处理系统中再生系统设计采用美国贝尔柯(Belco)公司混脂分离塔方案专利,即为在阳离子交换树脂再生器中,增设了一层混脂树脂层(Tnouble Resin),该层树脂是由于阳树脂在运行和再生过程中磨损,生成一些细颗粒阳树脂,在反洗中易于与阴树脂混杂一起所引起。“混脂分离塔”方案即为将这一层混脂树脂层在阳、阴树脂分层中  相似文献   

13.
在一级除盐系统中,阴离子交换器(简称阴床)的前面再串上一级阴床,它就称为前置阴离子交换器(简称前阴)如图1 在运行时,将阳床出水先流经前阴,然后再串联流过阴床的交换层,使水中的有机物和无机阴离子,先被前阴吸附和交换一部分,这样就减轻了阴床除去有机物及无机阴离子的负担。从而提高了阴床的周期制水量和减少了有机物对阴床树脂的污染。再生时,再生剂(NaOH溶液)先逆流通过阴床的  相似文献   

14.
朱兴宝 《湖北电力》1999,23(2):48-50
由于水源的污染,除盐系统的故障越来赵多。为清除除盐系统离子交换树脂的污染与混床出水的污染,介绍水处理除盐系统中一些故障的诊断与处理技术,包括污染离子交换树脂的清洗方法,除盐系统混床树脂中的微生物处理方法,废弃强碱阴树脂的再利用以及阴床漏钠的治理等。  相似文献   

15.
] 由于水源的污染,除盐系统的故障越来越多。为清除除盐系统离子交换树脂的污染与混床出水的污染,介绍了水处理除盐系统中一些故障的诊断与处理技术,包括污染离子交换树脂的清洗方法、除盐系统混床树脂中的微生物处理方法、废弃强碱阴树脂的再利用以及阴床漏钠的治理等。  相似文献   

16.
生水中含溶解固形物约为10毫克当量/升,其中碱度为3.2毫克当量/升以上。采用的水处理系统是:阳双层床——脱碳器——阴双层床——混床。这种运行方式是经济的,其关键是同时使用了弱酸、弱碱树脂和普通的强酸、强碱树脂。这些弱酸、弱碱树脂单独去除原水中的某些离子是很有效的,比强酸、强碱树脂更为有效。结果,所需的再生剂量也少。例如,在运行时,氢型的弱酸树脂能除去水中的所有钙、镁离子。再生时酸的比耗约为1.10,而强酸树脂约需2.00到3.00。弱碱树脂能除去阳床出口水中的硫酸根和氯根,同时  相似文献   

17.
李沛文 《电力建设》2002,23(9):51-0
广州员村电厂化学除盐系统自投产以来,阳床再生后,阳床树脂层还存在较多的残余酸和阳离子,交换出来的阳离子又重新被再生好的树脂所吸附,降低了树脂的交换能力,影响阳床的出水水质和再生效果。这种原阳床再生方法,经常出现阳床再生不合格现象,酸耗较高。为此,该厂改用“二步进酸”法再生阳床。改为此法再生阳床后,使再生合格率达100 % ,酸耗有较大幅度的下降,节省了再生用酸量,有效地降低了除盐水的生产成本。  相似文献   

18.
研究确切查明,阳逻电厂凝结水水处理混床投运造成炉水,pH值下降问题的主要原因,是阴树脂再生度低的情况下阴,阳树脂混合不均,据此,提出了按阳层床方式运行,改用高纯碱或增设前置阳床等三种解决此问题的方案。  相似文献   

19.
简述了石洞口二电厂两台超临界600MW机组的凝结水精处理系统的运行、维护管理、存在的问题及其解决方法。该系统系由美国Graver公司提供,为体外再生中压三罐系统,采用SeprexⅡ再生工艺;阳、阴树脂分别为Dow公司的HGR—W2及550A均粒阴树脂,容积比为1.5∶1。正常运行时,混床在H型时的出水H+导电率达0.08μS/cm,Na+和Fe均小于5μg/L。凝汽器微量泄漏(即凝结水K+H导电度上升至0.3~0.5μS/cm)时,精除盐器出水的K+H导电度仍可保持在0.2μS/cm以下。存在的问题主要是:1.由于阳再生罐结构方面的原因使阴树脂混入阳树脂中而产生交义污染(阳树脂混入阴树脂中,Seprex法能很好的加以解决);2.HGR—W2阳树脂性能较差,容易破碎,中压精除盐系统最好使用均拉型树脂  相似文献   

20.
利用西安热工研究院有限公司自主研发的凝结水精处理混床运行诊断和优化专家系统对某超超临界1000 MW机组凝结水精处理系统进行了运行诊断,找出了凝结水精处理系统高速混床(高混)和体外分离及再生设备存在的问题,并对其进行了运行参数调整试验,并进行了运行优化.优化后,该系统高混的周期制水量由7万m3升至13万m3,失效树脂经分离塔分离后阴离子交换树脂(阴树脂)中阳离子交换树脂(阳树脂)所占份额由原来的1.2%降至0.1%,阳树脂中阴树脂所占份额由原来的0.54%降至0.08%,运行周期内混床出水水质指标全部满足标准要求,长期运行热力系统水汽指标显著提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号